GEOLOGIC SETTING AND WATER QUALITY OF SELECTED BASINS IN THE ACTIVE COAL-MINING AREAS OF OHIO, 1987-88

By Alan C. Sedam

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 90-4109

Prepared in cooperation with the

OHIO DEPARTMENT OF NATURAL RESOURCES,

DIVISION OF RECLAMATION

1991

U.S. DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, JR, Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief Water Resources Division U.S. Geological Survey 975 W. Third Avenue Columbus, Ohio 43212-3192 Copies of this report can be purchased from:

U.S. Geological SurveyBooks and Open-File ReportsSectionBox 25425, Bldg. 810Denver, CO 80225

ILLUSTRATIONS--Continued

4.	Generalized geologic column for southeastern Ohio
5.	Map showing locations of long-term surface-water
6.	Box plots showing the range, percentiles, and median values of constituents at long-term surface-water sites
7.	Map showing location of ground-water sampling sites
8.	Piper diagram showing distribution of constituents in ground water in the study area
9.	Map of Sandy Creek basin showing surface-water sites, ground-water sites, and Stiff diagrams for ground-water sites
10.	Box plots showing the range, percentiles, and median values of constituents at surface-water
11.	sites in Sandy Creek basin Map of Middle Tuscarawas River and Sugar Creek basin showing surface-water sites, ground- water sites, and Stiff diagrams for ground-
2.	water sites
13.	Creek basin Map of Lower Tuscarawas River basin showing surface-water sites, ground-water sites, and
4.	Stiff diagrams for ground-water sites Box plots showing the range, percentiles, and median values of constituents at surface-water
5.	sites in Lower Tuscarawas River basin Map of Short and Wheeling Creeks basin showing surface-water sites, ground-water sites, and
6.	Stiff diagrams for ground-water sites Box plots showing the range, percentiles, and
7	median values of constituents at surface-water sites in Short and Wheeling Creeks basin
7.	Map of Upper Wills Creek basin showing surface- water sites, ground-water sites, and Stiff
.8.	diagrams for ground-water sites Box plots showing the range, percentiles, and median values of constituents at surface-water
19.	Map of Upper Raccoon Creek basin showing
	surface-water sites, ground-water sites, and Stiff diagrams for ground-water sites

CONTENTS

Abstract	
Introduction	
Purpose and scope	
Description of study area	
Acknowledgments	
Methods of study	
General water quality	
Surface water	
Ground water	
Geologic setting and water quality of selected basins Sandy Creek basin	
Geologic setting	
Geologic setting	
Water quality	
Surface water	
Ground water	
Middle Tuscarawas River and Sugar Creek basin	
Geologic setting	
Water quality	
Surface water	
Ground water	
Lower Tuscarawas River basin	
Geologic setting	
Water quality	
Surface water	
Ground water	
Short and Wheeling Creeks basin	
Geologic setting	
Water quality	
Surface water	
Ground water	
Upper Wills Creek basin	
Geologic setting	
Water quality	
Surface water	
Ground water	
Upper Raccoon Creek basin	
Geologic setting	
Water quality	
Surface water	
Ground water	
Ground water	
Summary	
References cited	
ILLUSTRATIONS	
Figure 1. Map showing location of study area	
2. Map showing land use of eastern Ohio	
3 Congratized goology of study area	
 Generalized geology of study area 	

TABLES

			Page
Table	1.		
		identification codes	- 5
	2-3.	characteristics, 1987-88:	
		2. Long-term surface-water sites	- 16
		3. Ground-water sites	23
	4.	그 이 보다는 그 사람들은 아이에 가지 않는 아들이 아이들이 아니라 내가 되었다면 하는데 하나 그는 아니라 아이들이 그 살아 그렇게 하는데 그렇게 하는데 그렇게 하는데 그렇게 하는데 그렇게 하는데 그 때문에 살아 먹었다면 그렇게 되었다면 그 때문에 살아 먹었다면 그렇게 되었다면 그렇게 되었다면 그렇게 되었다면 그렇게 되었다면 그 사람들이 되었다면 그렇게 그렇게 그렇게 되었다면 그렇게	
		Sandy Creek basin, October 1987	29
	5.	Ranges and medians for selected water-quality	
		characteristics for surface-water sites in	
		Sandy Creek basin	- 31
	6.	Water-quality data for ground-water sites in	31
	0.	Sandy Creek basin, August 1987	- 33
	7.	Water-quality data for surface-water sites in	33
	/ •	Middle Tuscarawas River and Sugar Creek	
		basin, October 1987	- 38
	8.	Ranges and medians for selected water-quality	30
	٥.	characteristics for surface-water sites in	
		Middle Tuscarawas River and Sugar Creek	
		basin	40
	9.	Water-quality data for ground-water sites in	40
	٥.	Middle Tuscarawas River and Sugar Creek	
		basin, August 1987	43
	10.	Water-quality data for surface-water sites in	43
	10.	the Lower Tuscarawas River basin, October	
		1987	- 49
	11.	그는 그들이 살해 바다 하는 사람이 있다면 가는데 가는데 되었다면 하다면 하는데	43
	11.	characteristics for surface-water sites in	
		Lower Tuscarawas River basin	- 51
	12.		31
	+	the Lower Tuscarawas River basin, August	
		1987	- 53
	13.		33
		Short and Wheeling Creeks basin, October	
		1988	- 59
	14.	그 이렇게 하면 가게 하는데 가는데 하는데 그들은 살이 하는데	
		characteristics for surface-water sites in	
		Short and Wheeling Creeks basin	61
	15.	Water-quality data for ground-water sites in	
		Short and Wheeling Creeks basin, August	
		1988	62
	16.	Water-quality data for surface-water sites in	
		Upper Wills Creek basin, October 1988	- 69
	17.	Ranges and medians for selected water-quality	927
	The state of the s	characteristics for surface-water sites in	
		Upper Wills Creek basin	71
	18.	Water-quality data for ground-water sites in	
		Upper Wills Creek basin, August 1988	73

TABLES--Continued

19.	Medians for selected water-quality	
	characteristics for long-term surface-water	
	sites in Upper Raccoon Creek Basin, 1984-86 and 1986-88	78
2.0		10
20.	Water-quality data for ground-water sites in	
	Upper Raccoon Creek basin, August 1988	79
21.	Water-quality data for long-term surface-water	
	sites, 1987-88	86

Page

CONVERSION FACTORS AND ABBREVIATIONS

Multiply	By	To obtain
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
acre	0.4047	hectare
square mile (mi ²)	2.590	square kilometer (km²)
<pre>foot per mile (ft/mi)</pre>	0.1894	meter per kilometer (m/km)
cubic foot per second (ft /s)	0.02832	cubic meter per second (m ³ /s)
<pre>gallon per minute (gal/min)</pre>	0.06309	liter per second (L/s)

Chemical concentrations and water temperature are given in metric units. Chemical concentration is given in milligrams per liter (mg/L) or micrograms per liter (µg/L). Milligrams per liter is a unit expressing the concentration of chemical constituents in solution as weight (milligrams) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter. For concentrations less than 7,000 mg/L, the numerical value is the same as for concentrations in parts per million.

Temperature is given in degrees Celsius ($^{\circ}$ C), which can be converted to degrees Fahrenheit ($^{\circ}$ F) by the following equation:

$$F = 1.8(^{\circ}C) + 32$$

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "Sea Level Datum of 1929."

IDENTIFICATION OF SAMPLE-COLLECTION SITE

In water-quality data tables, collection sites are identified as follows:

		Longitude	LONG 081 22 07W)		Tributary	West			
0	(M90		101		TR	Z			
Longitude	33	<u>a</u>	30N						
Long	Longitude LONG 081 33 06W) Latitude	Latitud	(LAT 40 38 30N		lear	River	un	South	
	22N			N NAM					
Latitude	(LAT 40 49 22N	Location	US POST OFFICE AT SANDYVILLE OH	STANDARD ABBREVIATIONS USED IN STATION NAMES	NR	24	RN	S	
ō	TION OH	H	FFICE AT	ATIONS US	Little	Lake	Middle	North	
Station name	EWMAN C NR MASSILLON OH	Owner	S POST O	ABBREVI	П	LK	Σ	N	
Sta	C	ня		IDARD					
	NEWMA	Local number	TU-53	STAN	Creek	East	Fork	Great	
Basin	G-2	EH	20700		υ	田	Ŀ	Ö	
Station	03116950	Station	403830081220700						
Surface- water site	- L				Above	Branch	Brook	Below	
Sur		Growa			AB	В	BK	BL	

GEOLOGIC SETTING AND WATER QUALITY OF SELECTED BASINS IN THE ACTIVE COAL-MINING AREAS OF OHIO, 1987-88

By Alan C. Sedam

ABSTRACT

This report presents hydrologic data from selected drainage basins in the active coal-mining areas of Ohio from July 1987 through October 1988. The study area is mostly within the unglaciated part of eastern Ohio along the western edge of the Appalachian Plateaus physiographic province. The 1987-88 work is the second phase of a 7-year study to assess baseline water quality in Ohio's coal region.

The data-collection network consisted of 41 long-term surface-water sites in 21 basins. The sites were measured and sampled twice yearly at low flow. In addition, six individual basins (three each year) were selected for a more detailed representation of surface-water and ground-water quality. In 1987, the Sandy Creek, Middle Tuscarawas River and Sugar Creek, and Lower Tuscarawas River basins were chosen. In 1988, the Short and Wheeling Creeks, Upper Wills Creek, and Upper Raccoon Creek basins were chosen.

Because of their proximity to the glaciated region and outwash drainage, the basins studied intensively in 1987 contain more shallow productive aquifers than do the basins studied in detail for 1988, in which shallow ground-water sources are very localized.

Chemical analyses for 202 surface-water and 24 ground-water samples are presented. For field measurements made at surface-water sites, the specific conductance ranged from 295 to 3,150 µS/cm (microsiemens per centimeter at 25 degrees Celsius). For pH, the range was 2.8 to 8.6. Alkalinity ranged from 5 to 305 mg/L (milligrams per liter) as CaCO₃. For similar measurements at ground-water sites, the specific conductance ranged from 120 to 1,590 µS/cm. For pH, the range was 5.4 to 8.9. Alkalinity ranged from 8 to 461 mg/L as CaCO₃.

INTRODUCTION

Surface mining of coal, which has been used for over 75 years in Ohio, accounts for most of the coal mined in the State. In 1987, 65.5 percent of Ohio coal was surface mined, and in 1988, 64.0 percent was surface mined (S.W. Lopez, Ohio Department of Natural Resources, Division of Geological Survey, oral commun., 1989).

Figure 1.--Location of study areas.

Adverse effects on the hydrologic environment caused by surface mining have led to the enactment of stringent regulations designed to prevent or reduce further damage to ground and surface waters within and adjacent to mining areas and to promote reclamation of affected areas. Although considerable hydrologic data have been collected, much of the data have been limited to relatively small areas of abandoned mines. There remains a need to evaluate the long-term cumulative effects of surface mining on surface- and ground-water resources throughout the coal-bearing region of eastern Ohio. These data could be used by State agencies responsible for evaluating applications for surface-mining permits and enforcement of regulations.

In 1985, the U.S. Geological Survey, in cooperation with the Ohio Department of Natural Resources (ODNR), Division of Reclamation, began a study to collect baseline hydrologic data to describe the physical setting and quality of water in areas of active surface mining of coal. The study was planned as a three-phase, 7-year investigation during which a long-term stream-site sampling network was established. The study plan also included short-term collections of surface- and ground-water data from basins which were selected for intensive study.

Results of the first phase of the 7-year study, as well as considerable background information for the study area as a whole, are given in Jones (1988). A planned final report is to include data from the final phase, 1989-1991, along with interpretations based on the entire 7-year study.

Purpose and Scope

This report presents results of data collected during the second phase (July 1987 through October 1988) of the 7-year study. Specifically, the report (1) presents surface-water-quality data for 21 drainage basins in eastern Ohio where coal mining is currently active, (2) describes the physiographic and geologic settings of six selected basins, and (3) presents, within the same six basins, current water-quality data for several ground-water and surface-water sites selected to represent hydrologic conditions in the basins.

Description of Study Area

The study area includes all or part of 29 counties in the coal-bearing region of eastern Ohio (fig. 1). The area has been divided into 21 drainage basins, which are listed in downstream order in table 1 and shown by their respective basin identifiers (A, B, etc.) in figure 1. Sandy Creek, Middle Tuscarawas River and Sugar Creek, and Lower Tuscarawas River basins (E, G, and I, fig. 1) were selected for intensive study in 1987. Short and

Table 1.--Study basins, in downstream order, and assigned identification code

Basin code	Basin name
A	Little Beaver Creek
В	Yellow/Cross Creeks
C	Short/Wheeling Creeks
D	McMahon/Captina/Sunfish Creeks
E	Sandy Creek
F	Conotton Creek
G	Middle Tuscarawas River/Sugar Creek
Н	Stillwater Creek
I	Lower Tuscarawas River
J	Walhonding River
K	Upper Wills Creek
L	Lower Wills Creek
M	Upper Muskingum River
N	Middle Muskingum River
0	Moxahala Creek
P	Upper Hocking River
Q	Middle Hocking River
QQ	Leading Creek
R	Upper Raccoon Creek
S	Lower Raccoon Creek
T	Symmes/Ice/Indian Guyan Creek

Wheeling Creeks, Upper Wills Creek, and Upper Raccoon Creek basins (C, K, and R, fig. 1) were selected for intensive study in 1988.

The boundary between Pleistocene glaciation on the northwest and the unglaciated terrain on the southeast is shown in figure 1. Most of the study area lies in the unglaciated Allegheny Plateau section of the Appalachian Plateaus physiographic province (Fenneman, 1938, p. 283). The Ohio Department of Natural Resources, Division of Geological Survey, designates the region as Glaciated Plateau and Unglaciated Plateau. Local relief is gentle (100 to 200 ft) along the glaciated western and northern fringes of the study area but is as much as 500 ft in places near the Ohio River Valley.

Four generalized land-use categories in eastern Ohio are shown in figure 2. Most of the areas depicted as "mining" within the study area represent surface mining of coal, although there is undoubtedly some local extraction of sand, gravel, or rock. Some areas of coal mining lie outside the study area, as shown in figure 2, but these are in drainage basins where coal extraction by surface mining is less active than it is in the 21-basin study area.

The climate of the eastern Ohio region was summarized by Jones (1988, p. 6). Average annual precipitation ranges from about 37 inches (in.) in the northern part of the study area to about 42 in. in the southern part (Ohio Department of Natural Resources, Division of Water, 1962). The period covered by this report, 1987-88, is somewhat unusual in that precipitation throughout Ohio was markedly below normal, especially in the study area.

The following excerpts with pertinent illustrations from Jones (1988, p. 6 and 10) furnish additional descriptions of the study area.

Coal beds are found in a 32-county area of eastern Ohio (Brant and Delong, 1960). The area is underlain by rocks of Mississippian, Pennsylvanian, and Permian age. Rock types are usually present in sequences of (with increasing depth) coal, limestone, calcareous shale, sandstone, and limestone (Brant and Moulton, 1960).

The outcrop pattern [fig. 3] from west to east progresses from older to younger units, which trend north-northeast and dip regionally to the southeast at approximately 30 feet per mile toward the Appalachian basin. The regional trend of the Pennsylvanian System is modified locally by numerous low structural features (Lamborn, 1951).

Figure 2.--Land use of eastern Ohio.

Figure 3.--Generalized geology of study area (modified from Collins, 1979).

The oldest formation of Pennsylvanian age is the Pottsville Formation [fig. 4], in which conglomeratic sandstones are dominant. Above this are the Allegheny, Conemaugh, and Monongahela Formations, all of Pennsylvanian age, which comprise alternating beds of shale, sandstone, coal, and thin limestones. The Dunkard Group of Pennsylvanian and basal Permian age is a variable series of rocks composed of beds of red shale (which is the most abundant rock type), limestone, sandstone, and coal. In the south, the limestone and coal are scarce, and the series consists chiefly of shale and sandstone (Collins, 1979).

The proportion of sandstone strata increases with The Allegheny Formation is 40 percent sandstone, and the remainder is composed of shale and clay. Conemaugh Formation is not more than 30 percent sandstone, and the Monongahela Formation consists of shale, limestone, and not more than 15 percent sandstone (Stout and others, 1943). The carbonate content decreases with age in the Pennsylvanian rocks; therefore, the Monongahela Formation contains more carbonate rocks than the Allegheny and Conemaugh Formations (Razem and Sedam, 1985). Deposits of unconsolidated silts, nearly 100 feet thick in some places, are found chiefly in the bottoms of old valleys that now have no major drainage, and in the lower parts of many smaller valleys. In the main valleys, these silts have largely been removed, and the valleys now are filled with sands and gravels, which have been terraced by the present streams. In the valleys that have carried glacial waters (but have not been glaciated), these coarse, fluvial deposits are common and are composed chiefly of glacial outwash (Happ, 1934).

Fifty-two coal beds are recognized and named in Ohio, most of which are thin and discontinuous. Most minable coals are in the Allegheny and Monongahela Formations, and all are highly volatile and bituminous, falling in the medium (1.1 to 3.0 percent) to high (greater than 3.0 percent) sulfur range (Collins, 1978). Mining has traditionally concentrated on the "numbered" coals--Sharon ("No. 1") through Waynesburg ("No. 11") -- which still supply most coal mined in Ohio. The Allegheny and Monongahela Formations are especially productive because of their more uniform thickness and distribution; therefore, most mines in Ohio are in parallel bands following the outcrop of these two formations (Pfaff and others, 1981). The lithologic character of the principal units and the relative positions of the important coals are shown in figure 4.

System	Group, Forma- tion		Forma-		Important coal beds			
Permian	Group	Greene	Mostly red shales and thin limestones, localized coals and sandstone bodies. Present only in small areas.	No.	12	Washington		
Pennsylva- nian and Permian	Dunkard	Washington	Sandstones, shales, and minor coals. Sandstones are typically micaceous, fine to medium grained, and have thin conglomeratic zones. Locally, sandstones may be massively developed.					
	shale, sandston fine to medium ment. Compared Monongahela has larger proporti marly, freshwat tured surfaces Thick repetitio stones interspe clays and wides are of marine o are marly, fres		Important coal-bearing strata and associated beds of clay, shale, sandstone, and limestone. Sandstones tend to be fine to medium grained, micaceous, and patchy in development. Compared to other Pennsylvanian units, the Monongahela has a smaller proportion of sandstone and a larger proportion of limestone. Limestones tend to be marly, freshwater types. Secondary porosity along fractured surfaces is well developed locally.	No.	10 9	Waynesburg Uniontown Meigs Creek Pittsburgh		
			Thick repetitious succession of shales and patchy sand- stones interspersed with thin, discontinuous coals and clays and widespread limestones. The lower limestones are of marine origin, whereas those in the upper part are marly, freshwater types. Secondary porosity along fractured surfaces is well developed locally.					
Pennsylvanian	a code	Allegneny	Repetitious succession of important coal-bearing strata interspersed with several fine to coarse-grained massive, cross-bedded sandstones and thin, persistent limestones. Sandstones, though widespread, have considerable local lateral variation. Solution cavities are developed locally in the limestones.	No. No. No. No.	6A 6 5 4A	Upper Freeport Lower Freeport Middle Kittannin Lower Kittanning Clarion Brookville		
	400	9	ottsville	Succession of sandstone, shales, clays, coals, and thin limestones. Locally, sandstones are open-textured, conglomeratic, massive, cross-bedded, and commonly are found as deposits filling old channels in eroded terrains. Lateral gradations include shale and coal. Non-deposition during the Early Pennsylvanian precluded the development of the basal conglomerate of the Sharon Member in most of southeastern Ohio.	No. No.	2	Lower Mercer Quakertown Sharon	
				Thin, discontinuous zone of impure nodular iron ore and ferruginous sandstone. The unit marks the disconformity between Mississippian and Pennsylvanian strata. Age of the deposit is conjectural, but generally it is included at the base of the Pottsville Formation.				
Mississippian	Undifforentiated		Variable sequence of sandstones and shales; Maxville Limestone is present in patches at the top. In places, various units are conglomeratic and sandstones are massive. Lateral and vertical gradation to siltstone and shale is common. Ground-water potential is limited to extreme western areas. Eastward, the section contains salt water. To the north, post-Mississippian erosion has removed part of the section.					

Figure 4.--Generalized geologic column for southeastern Ohio, including relative position of important coal beds (from Razem and Sedam, 1985).

Acknowledgments

The author acknowledges the cooperation of the Ohio Department of Natural Resources, Division of Reclamation, for information concerning location of coal-mining activity, and to the Division of Water, for access to their data files. The author also appreciates the cooperation of various commercial and municipal entities as well as individual property owners who allowed access to their wells or other data-collection sites.

METHODS OF STUDY

Locations of the long-term surface-water sites by use of their basin identifier and sequential number are shown in figure 5. The original (1985-86) network of long-term surface-water sites consisted of one to three sites in each of 20 basins, totaling 40 sites. In 1987, Leading Creek basin (QQ, fig. 1), was added to the study area. With the addition of site QQ-1 (fig. 5), the network was expanded to 41 long-term surface-water sites.

Discharge measurements were made, and water samples were collected at all sites twice annually, in late spring or early summer and in early fall under low-flow conditions. (For this study, low-flow condition was a rate of flow exceeded 70 percent or more of the time). Consideration of rainfall as a factor in anticipation of streamflow conditions was essential to insure that results of stream sampling were not biased by unusually high or low flows. Identical low-flow conditions seldom prevailed throughout the study during the sampling periods, but the flow variations for a given site between sampling periods were of the same magnitude as in the first-phase study.

Discharge measurements were made and water samples were collected once at 40 short-term surface-water sites during the fall sampling periods. In 1987, 10 such sites were measured and sampled in each study basin (E, G, I, fig. 1), and, in 1988, five sites each were measured and sampled in basins C and K (fig. 1). Because of the completion of two recent studies in Raccoon Creek (Wilson, 1985 and 1988), no short-term surface-water sites were measured or sampled in Upper Raccoon Creek basin (R, fig. 1).

Identical procedures were followed at all surface-water sites (Jones, 1988). Field measurements of discharge, specific conductance, pH, temperature, alkalinity, and acidity were made at each site. Discharge was measured by the methods described in Rantz and others (1982). Specific conductance, pH, temperature, and alkalinity were determined by the methods discussed in Skougstad and others (1979).

Alkalinity and (or) acidity were measured at each site. If the pH of the stream was in the range 5.0 to 6.5, both were determined. Acidity was determined by use of the hot-peroxide-treatment method (American Public Health Association, 1975). Water samples for chemical analysis were collected according to the equal-transit-rate/equal-width-increment method (U.S. Geological Survey, Office of Water Data Coordination, 1977) for all streams with water depths greater than 0.5 ft. These were composited in a churn splitter from which subsamples were then drawn for field and laboratory analysis. Samples that were sent to the U.S. Geological Survey's National Water Quality Laboratory in Denver, Co., were analyzed for concentrations of dissolved sulfate, total and dissolved iron, total and dissolved manganese, and total and dissolved aluminum.

All six of the basins selected for intensive study were examined for the existence of shallow productive aguifers that might be receiving recharge affected by surface-mine drainage. Ground-water resource maps and drillers' logs on file at the Ohio Department of Natural Resources, Division of Water, were used to locate prospective areas of shallow ground-water use and wells that could be used for sampling. The unconsolidated aquifer along the Ohio River was excluded from the study. Four groundwater sites in each of the six basins were selected for sampling. The 24 ground-water samples were analyzed at the U.S. Geological Survey's National Water Quality Laboratory. Sampling procedures usually consisted of selecting wells in current use, inspecting the system to avoid treatment devices, and allowing the well to pump long enough to insure that the water sample was representative of the formation. Field measurements were made for specific conductance, pH, dissolved-oxygen concentration, temperature, and alkalinity. Water levels also were measured when possible.

Laboratory analyses included concentrations of--

Total and dissolved aluminum;
Dissolved sulfate;
Total and dissolved iron;
Total and dissolved manganese;
Dissolved silica;
Dissolved calcium;
Dissolved magnesium;
Dissolved sodium;
Dissolved chloride;
Dissolved potassium;
Dissolved organic carbon; and
Total dissolved solids (residue on evaporation at 180 °C).

GENERAL WATER QUALITY

Surface Water

Local geology and the extent to which the area has been mined are two important factors that affect water quality of streams within the 21-basin study area. Acidified drainage has caused severe degradation of stream water quality in some areas and remains a potential threat elsewhere in unmined areas. In addition to acidic drainage, increased levels of constituents that can adversely affect aquatic biota of the stream can also be present.

The principal cause of the acidic drainage is the widespread presence of sulfur-bearing minerals, such as pyrite and marcasite, in coal-bearing strata. Exposure of these minerals to air and water by mining leads to complex chemical changes, such as the oxidation of sulfides to sulfates. This commonly results in an increased level of acidity to surface runoff. In some places, limestone is present and can serve as a buffer by helping to neutralize acidic drainage.

Several easily measured physical properties and chemical constituents were used to assess the general water quality of major streams in the study area. These were specific conductance, pH, field alkalinity and (or) acidity, and concentrations of dissolved sulfate, iron, manganese, and aluminum, and concentrations of total recoverable iron, manganese, and aluminum. Ranges and median values of these same properties and constituents are summarized in table 2 for the 41 long-term surfacewater sites. Site identifiers for each extreme value correspond to the long-term-site sampling locations shown in figure 5. The table is based on data from four periods of sampling at the 41 sites: late July 1987, late October 1987, early June 1988, and early October 1987. Ranges, percentiles, and median values of constituents are presented graphically in figure 6, and detailed analyses are given in table 21 at the back of the report.

Table 2.--Ranges and medians for selected water-quality characteristics for long-term surface-water sites 1987-88

[mg/L, milligrams per liter; µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius]

Property or constituent	Range and loca- tions (fig. 5)	Median
Specific conductance,		
in µS/cm	290(T-1) to 2,700(C-1)	795
рН	2.8(Q-2) to 8.6(B-2,3; C-2;P-2)	7.8
Alkalinity, in mg/L as CaCO ₃	O(sev. sites) to 263(C-1)	115
Sulfate, dissolved, in mg/L as SO ₄	23(M-1) to 1,500(C-2)	195
Aluminum, total, in ug/L as Al	<10(J-1, P-2) to 17,000(Q-1)	190
Aluminum, dissolved, in μg/L as Al	<10(sev. sites) to 17,000(Q-1)	20
Iron, total, in ug/L as Fe	70(D-3, QQ-1) to 62,000(Q-2)	570
Iron, dissolved, in μg/L as Fe	<10(sev. sites) to 51,000(Q-2)	50
Manganese, total, in ug/L as Mn	10(D-1) to 50,000(O-2)	315
Manganese, dissolved, in ug/L as Mn	<10(D-1,D-3) to 47,000(O-2)	275

Specific conductance provides a quick approximation of the dissolved-solids content in water samples. According to Hem (1985), the dissolved-solids concentration, in milligrams per liter, is about 0.55 to 0.75 times the specific conductance, in microsiemens per centimeter at 25 °C. The dissolved-solids concentration, although not determined for the surface-water samples, was determined for the water samples from the 24 ground-water sites. In most of these samples, the dissolved-solids concentration (in milligrams per liter) was 0.58 to 0.67 times the specific conductance (in microsiemens per centimeter).

Figure 6.—Box plots showing the range, percentiles, and median values of constituents at long-term surface-water sites.

Sites where high specific conductance and low pH₁ values were measured were generally the same sites where elevated levels of dissolved sulfate, iron, manganese, and aluminum were found-typical of streams draining actively mined or unreclaimed abandoned-mine lands.

The long-term surface-water sites with the highest concentrations of dissolved aluminum, iron, and manganese were O-1, O-2, Q-1, and Q-2 (fig. 5). On most of the sampling occasions, the pH at these sites was less than 5.0. Although the concentration of dissolved sulfate was generally high at the acidic sites, the two highest sulfate levels were at sites C-1 and C-2 where the waters were alkaline. A number of long-term surface-water sites which were located near the mouth of a coal-producing basin exceeded the median values for these constituents listed in table 2.

In the first phase of this study (Jones, 1988, p. 16), it was noted that a neutral value of pH in streams that drain parts of the coal-mining region was not uncommon. In the current study, for most of the long-term surface-water samples, the pH exceeded a value of 7.0. The acid drainage could have been diluted by waters buffered from contact with limestone. "Buffering capacity," the ability to neutralize additions of acids or bases without a change in pH, is controlled by the concentration of alkalinity and acidity present in water (U.S. Environmental Protection Agency, 1986).

In earlier studies, it has been shown that levels of some of these constituents can be restored by reclamation to premining levels, although specific conductance and concentration of dissolved sulfate are likely to remain at elevated levels (Pfaff and others, 1981; Hren and others, 1984).

Ground Water

Ground-water systems within areas of coal-mining operations can be affected either by disruption of ground-water flow or by environmental changes that cause degradation of water quality. In this investigation, shallow, productive aquifers that could be affected by surface mining were targeted to be used for an assessment of ground-water quality. Shallow sources of ground water are present in many places throughout the coal-bearing region of eastern Ohio; however, those that are capable of furnishing enough water for commercial or small industrial

[&]quot;Elevated" in this context refers to constituent concentrations that are significantly above background levels.

purposes are mostly restricted to a few major valleys. The unconsolidated alluvial deposits along the Ohio River Valley, perhaps the most productive of these sources, are not included in the scope of this study. The next most productive source is the sand and gravel outwash and valley fill of sediments deposited as a result of Pleistocene glaciation, which covered the western and northern fringes of the study area. One of the more productive sources is along the Tuscarawas drainage system in the Sandy Creek, Middle Tuscarawas River and Sugar Creek, and Lower Tuscarawas River basins (E, G, and I, respectively, fig. 1). These three basins were chosen for intensive study in 1987.

Farther south and exclusive of the Ohio River Valley, shallow, productive sources of ground water are limited to the Muskingum River and Hocking River valleys. Elsewhere, shallow ground-water sources, whether in bedrock or unconsolidated material, are localized and, compared with the types just described, yield relatively small quantities of water to wells. This situation is characteristic of ground-water availability in Short and Wheeling Creek, Upper Wills Creek, and Upper Raccoon Creek basins (C, K, and R, respectively, fig. 1), which were chosen for intensive study in 1988.

Ground-water samples were collected at 24 sites scattered throughout the six basins chosen for intensive study in 1987-88 (fig. 7). A Piper diagram (fig. 8) shows the chemical character of the ground water from the 24 sites with respect to water type. The ranges and median values of selected constituents and physical properties are listed in table 3.

Figure 7.--Location of ground-water sampling sites.

Figure 8.--Piper diagram showing distribution of constituents in ground-water within the study area.

Table 3.--Ranges and medians for selected water-quality characteristics for ground-water sites, 1987-88

[mg/L, milligrams per liter; ug/L, micrograms per liter; uS/cm, microsiemens per centimeter at 25 degrees Celsius]

Property or constituent	Range and locations (fig. 7)	Mediar
Specific conductance,	The state of the s	
in µS/cm	120(V-90) to 1,590(B-30)	662
pH	5.4(C-11) to 8.9(B-28)	7.4
Oxygen, dissolved, in		
mg/L	0(sev. sites) to $7.8(TU-47)$	1.4
Hardness, in mg/L as		
CaCO ₃	13(HK-53) to 750 (B-30)	275
Noncarbonate hardness,		
in mg/L as CaCO ₃	O(sev. sites) to 530(B-30)	85
Calcium, dissolved, in		
mg/L as Ca	6.4(V-90) to 230(B-30)	66
Magnesium, dissolved, in		
mg/L as Mg	1.1 (HK-53) to 43(B-30, TU-51)	19
Sodium, dissolved, in		
mg/L as Na	3.7(CS-148) to 280(B-28)	24
Potassium, dissolved, in		
mg/L as K	0.6(GU-83,GU-85) to 6.8(TU-50)	1.
Alkalinity, in mg/L as		
CaCO ₂	8(V-90) to 461(B-28)	200
CaCO ₃		
mg/L as SO ₄	1.1(HK-53) to 630(B-30)	78
Chloride, dissolved, in		
mg/L as Cl	3.0(V-90) to 200(TU-53)	21
Silica, dissolved, in	and the first control and the area of the control o	
mg/L as SiO2	1.7(ST-51) to 38(V-90)	12
Solids, dissolved,		177
sum of constituents,		
in mg/L	100(V-90) to 1,140(B-30)	374
Aluminum, total, in	100(V 30) CO 1,140(D 30)	3/4
ug/L as Al	10(sev. sites) to 310(V-90)	20
Aluminum, dissolved, in	10(Sev. Sites) to 310(V-90)	20
ug/L as Al	<10/gov gitog) to 70/C-11)	<10
	<10(sev. sites) to 70(C-11)	110
ron, total, in	20(mii 50) +- (700/mii 52)	125
ug/L as Fe	20(TU-50) to 6,700(TU-53)	425
ron, dissolved, in	24 - 1 - 5 - 700407 021	300
ug/L as Fe	3(sev. sites) to 5,700(GU-83)	190
Manganese, total, in	201	0.5
ug/L as Mn	<10(TU-48, TU-50) to 950(TU-49)	95
Manganese, dissolved, in		
ug/L as Mn	<1(TU-50) to 890(TU-49)	74
Carbon, organic, dis-		
solved, in mg/L as C	0.5(sev. sites) to 3.0(GU-84)	0.1

Some of the values shown in table 3 may be compared with State water-quality standards for public water supply listed below. All concentrations are expressed as total concentrations unless otherwise noted (Ohio Environmental Protection Agency (OEPA), 1978):

Chloride	250	mg/La
Dissolved solids	500	mg/L2
Iron (dissolved)	300	ug/L
Manganese (total)	50	ug/L
Sulfates	250	mq/L

The hardness of water is based on the following classification (U.S. Environmental Protection Agency, 1986):

Classification of Water by Hardness

[Concentration in mg/L as $CaCO_3$]

0- 7	5		Soft		
75-15	0		Mode	rately	hard
150-30	0		Hard		
Greate	r than	300	Very	hard	

GEOLOGIC SETTING AND WATER QUALITY OF SELECTED BASINS

Each of the six drainage basins is described with respect to its physical setting and geologic framework. Results of the ground- and surface-water sampling are described and supported by data tables and graphic figures.

Sandy Creek Basin

Sandy Creek basin has a drainage area of 504 mi². Much of the basin lies in the eastern half of Stark County (fig. 9). About a quarter of the basin is in the northern part of Carroll County, and the remainder is in small areas of Columbiana and Tuscarawas Counties. The glacial boundary divides the area about equally between the Glaciated Allegheny Plateau on the north from the unglaciated Allegheny Plateau on the south, both sections of the Appalachian Plateaus Province (Fenneman, 1938) (fig. 1, basin E).

Not exceeding 500 mg/L as a monthly average or 750 ug/L at any time (equivalent specific-conductance values at 25 degrees Celsius are 800 and 1,200 uS/cm, respectively).

Figure 9.--Sandy Creek basin (E), showing surface-water sites, ground-water sites and stiff diagrams for ground-water sites.

Sandy Creek, the basin's principal stream, lies mostly south of the glaciated area and flows southwestward across the southern third of the basin toward its confluence with the Tuscarawas-Muskingum drainage system near Bolivar, Ohio. A principal tributary to Sandy Creek, Nimishillen Creek, drains much of the glaciated area in the Canton area.

What was probably a rugged, maturely dissected land surface has been subdued by glaciation in the north. Much of the topographically subdued area is characterized by urban growth in the Canton area (fig. 9). Elsewhere, principally toward the southeast, the land surface is more rugged, and local relief is about 300 ft. The main valley of Sandy Creek is broader than those of its tributaries and in places is relatively flat.

Geologic Setting

Major bedrock units, from west to east in ascending order, are the Pottsville, Allegheny, and Conemaugh Formations, of Pennsylvanian age. The Pottsville crops out in the Canton area but is generally covered with glacial drift. The Allegheny, which is present in most of the Sandy Creek basin, is the principal coal-bearing formation. As shown in figure 4, the Pennsylvanian System, in general, is a cyclic sequence of sandstones and shales interbedded with coal, clay, and limestone (fig. 4). The Conemaugh Formation, which is present as erosional hilltop remnants in the southeastern part of Stark County, is more extensive south of Sandy Creek in Carroll County.

Areas of active surface mining for the most part are across the middle third of the Sandy Creek basin, where the Allegheny Formation is at or near land surface. Part of this area is thinly covered with glacial drift. One or more of the Allegheny coals (fig. 4), primarily the Upper Freeport No. 7 and the Middle Kittanning No. 6, are being surface mined in this area. Two small areas are permitted for extraction of the Mahoning coal, which is found discontinuously in the Conemaugh Formation. Coal production from the Conemaugh Formation within the study area is generally minor.

Aquifers in the Sandy Creek basin include unconsolidated alluvial and glacial deposits and bedrock of sandstone, coal, and fractured limestone. In places, yields of more than 1,000 gal/min (gallons per minute) can be developed in the unconsolidated aquifers (Pree, 1962a). The most productive and extensively used shallow unconsolidated aquifers are in the northwestern part of the basin near Canton. The water quality of several public-supply systems in the area is already documented in the files of the Ohio Department of Health. Unconsolidated materials along Sandy Creek also are capable of relatively high yields to wells. Elsewhere in the southern two-thirds of the

basin yields of 5 to 25 gal/min can be developed from wells tapping bedrock. In the southeastern corner of the area, on the other hand, less than 5 gal/min can be expected (Pree, 1962a).

Water Quality

For an assessment of baseline water quality in Sandy Creek Basin, synoptic collections of water samples were made at selected stream and ground-water sites. Most of the stream and ground-water sampling sites were along Sandy Creek and tributaries that drain the largest area of active mining. A few sites were located on branches of Nimishillen Creek in the Canton area. All of the ground-water sites were within the Sandy Creek valley.

Surface water

The following surface-water sites were sampled in late October 1987.

Map in- dex num- ber	Site type	Site name	Drain- age area (square miles)
	T		252
E-1	Long-term	Sandy C at Waynesburg	
E-2	do.	Nimishillen C at Sandyville	
E-3	Short-term	Middle B Sandy C nr Minerva	
E-4	do.	Sandy C at Minerva	
E-5	do.	Still F nr Minerva	36.2
E-6	do.	Muddy F nr Minerva	11.8
E-7	do.	Hugle Rn nr Malvern	
E-8	do.	Pipe Rn at Malvern	
E-9	do.	L Sandy C at Robertsville	
E-10	do.	Middle B Nimishillen at Canton	
E-11	do.	E B Nimishillen C nr Canton	
E-12	do.	W B Nimishillen C at Canton	

Figure 10 is based on the 12 sites sampled. Results of the analyses of water samples from the 12 sites are listed in table 4. Water-quality analyses for the two long-term sites also are listed in table 21. Table 5 presents a summary of water-quality characteristics for the surface-water sites.

Figure 10.--Box plots showing the range, percentiles, and median values of constituents at surface-water sites in Sandy Creek basin.

Table 4.--Water-quality data for surface-water sites in Sandy Creek basin, October 1987

[°C, degrees Celsius; ft³/s, cubic feet per second; mg/L, milligrams per liter; µg/L, micrograms per liter; µs/cm, microsiemens per centimeter at 25 degrees Celsius; --, data not available]

	Instan- taneous dis- charge	Sps- cific con- duc- tance		Temper- ature	Acidity (mg/L	Alka- linity, field (mg/L as	Sul- fate, dis- solved (mg/L as
Date	(ft ³ /s)	(µS/cm)	pН	(°C)	CaCO ₃)	CaCO ₃)	SO ₄)
03117160 E-5	STILL F N	R MINERVA	OH (LAT	40 39 49N	LONG 081	02 24W)	
OCT 1987 27	1.1	330	7.6	9.0		93	40
03117280 E-7	HUGLE RN	NR MALVERN	OH (LA	T 40 42 49	N LONG 08	1 09 03W)	
OCT 1987 27	2.5	620	7.9	9.5		159	110
03117310 E-8	PIPE RN A	T MALVERN	OH (LAT	40 41 16N	LONG 081	11 02W)	
OCT 1987 27	0.50	295	7.7	8.0		64	49
404210081023700	E-6 MUDDY	F NR MINE	RVA OH	(LAT 40 42	10N LONG	081 02 3	7W)
OCT 1987 27	1.3	370	7.7	8.0		93	75
404505081041100	E-3 M B S.	ANDY C NR	MINERVA	OH (LAT 4	0 45 05N I	LONG 081	04 11W)
OCT 1987 27	1.8	640	8.1	8.0		215	72
03117150 E-4	SANDY C A	r MINERVA	OH (LAT	40 43 53N	LONG 081	05 57W)	
OCT 1987 27	12	550	8.3	9.0		168	87
03117450 E-9	L SANDY C	NR ROBERT	SVILLE (OH (LAT 40	44 03N L	ONG 081 14	4 40W)
OCT 1987 26	6.4	800	7.8	11.0		153	170
03118000 E-10	M B NIMIS	HILLEN C A	T CANTO	OH (LAT	40 50 29N	LONG 081	21 14W)
OCT 1987 26	4.2	850	7.1	12.0		172	120
3118100 E-11	E B NIMIS	HILLEN C N	R CANTO	OH (LAT	40 49 24N	LONG 081	17 55W)
OCT 1987 26	7.9	2,200	6.7	12.5		162	460
03117500 E-1	SANDY C A	WAYNESBU	RG OH (1	AT 40 40 2	21N LONG C	81 15 36	7)
OCT 1987 26	80	530	8.1	10.0		102	110
403823081213700	E-2 NIMISI	HILLEN CR	AT SANDY	VILLE OH	(LAT 40 38	23N LONG	081 21 37W)
OCT 1987 26	68	1,480	8.1	10.0		192	190
3118300 E-12	W B NIMISE	HILLEN C A	r canton	OH (LAT	40 47 48N	LONG 081	23 26W)
OCT 1987 26	7.3	955	8.0	11.0		232	120

Table 4.--Water-quality data for surface-water sites in Sandy Creek basin,
October 1987--Continued

Date			Alu- minum, total recov- erable (µg/L as Al)	Alu- minum, dis- solved (µg/L as Al)	recov- erable (ng/L	Iron, dis- solved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	ı
03117160	E-5	STILL I	NR MINER	VA OH (L	AT 40 39	49N LONG	081 02 241	W)	•
OCT 1987									
27			270	20	1,000	160	220	230	
03117280	E-7	HUGLE F	N NR MALV	ERN OH (1	LAT 40 42	49N LONG	081 09 03	3W)	
OCT 1987 27			80	<10	760	160	260	250	
03117310	E-8	PIPE RN	AT MALVE	RN OH (L	AT 40 41	16N LONG	081 11 021	(I)	
OCT 1987 27			110	30	800	480	130	110	
4042100810	23700	E-6 MUD	DY F NR M	INERVA O	H (LAT 40	42 10N L	ONG 081 02	2 37W)	
OCT 1987			***	00	***	100	202	2.0	
27			110	20	660	190	300	310	
4045050810	41100	E-3 M	B SANDY	C NR MINI	ERVA OH (LAT 40 45	05N LONG	081 04	11W)
OCT 1987 27			70	<10	420	140	90	100	
03117150	E-4	SANDY	C AT MINE	RVA OH (1	LAT 40 43	53N LONG	081 05 57	7W)	
OCT 1987 27			30	<10	290	100	60	40	
03117450	E-9	L SANDY	C NR ROE	ERTSVILL	OH (LAT	40 44 031	LONG 081	14 40W	D
OCT 1987 26			60	10	950	140	680	690	
03118000	E-10	M B NIM	ISHILLEN	C AT CAN	ON OH (L	AT 40 50 2	9N LONG	081 21 1	4W)
OCT 1987 26			20	<10	50	30	10	30	
03118100	R-11	F R NTM	TSHTLLEN	C NR CANT	TON OH (I.	AT 40 49 3	AN LONG (081 17 5	เรษา
OCT 1987				0211	(1	10 17 4	2010		est (
26			80	20	230	100	160	160	
03117500	E-1	SANDY C	AT WAYNE	SBURG OH	(LAT 40	40 21N LON	IG 081 15	36W)	
OCT 1987 26			80	20	430	90	280	240	
4038230812	13700	E-2 N	IMISHILLE	N CR AT S	SANDYVILL	E OH (LAT	40 38 231	LONG O	81 21 37W)
OCT 1987 26			70	30	450	60	100	80	
03118300 1	E-12	W B NIM	ISHILLEN	C AT CANT	ON OH (L	AT 40 47 4	8N LONG C	81 23 2	6W)
OCT 1987			105	.10	070	50	00	70	
26			100	<10	270	50	90	70	

Table 5.--Ranges and medians for selected water-quality characteristics for surface-water sites in Sandy Creek basin

[mg/L, milligrams per liter; ug/L, micrograms per liter; uS/cm, microsiemens per centimeter at 25 degrees Celsius]

Property or constituent	Range and locations (fig. 9)	Median
Specific conductance,		4-11-1
in uS/cm	295(E-8) to 2,200(E-11)	630
in uS/cmpH	6.7(E-11) to 8.3(E-4)	7.8
Alkalinity, in mg/L as		
	64(E-8) to 232(E-12)	160
CaCO ₃ Sulfate, dissolved,		
in mg/L as SO ₄ Aluminum, total,	40(E-5) to 460(E-11)	110
Aluminum, total,		
in ug/L as Al	20(E-10) to 270(E-5)	80
Aluminum, dissolved,		4.5
in ug/L as Al	<10(E-3,4,10) to 30(E-8)	15
Iron, total, in µg/L as	50/R 30\ 1 - 3 000/R 5\	4.40
Fe	50(E-10) to 1,000(E-5)	440
Iron, dissolved, in µg/L as Fe	30(E-10) to 480(E-8)	120
Manganese, total,	30(E-10) CO 480(E-8)	120
in µg/L as Mn	10(E-10) to 680(E-9)	145
Manganese, dissolved,	10(11 10) 00 000(11 3)	T.4.2
in ug/L as Mn	30(E-10) to 690(E-9)	135

Some variations in the analyses resulting from the synoptic sampling of the streams may seem unusual. Sites closest to areas of active mining might be expected to show above-average levels (or greater than the median) for constituents listed in table 5, except for pH and alkalinity. For sites E-7 and E-9, which are close to active surface mining, this is true for iron, manganese, and sulfate but not for aluminum. At the same sites, alkalinity, specific conductance, and pH were close to the median value indicated in table 5. Dissolved sulfate and specific conductance were highest and pH the lowest at site E-11, which is not close to active mining but can be affected by drainage from areas of abandoned mines.

Sites E-5, E-6, and E-8, on tributaries to Sandy Creek, are not heavily impacted by mining activity. With respect to the median values in table 5, these sites were relatively high in iron and manganese and, except for E-8, aluminum as well. Conversely, levels of sulfate, alkalinity, and specific conductance at the same three sites were lowest in the basin.

Ground water

Four wells that tap unconsolidated deposits of sand and gravel were sampled in the study basin. Locations of the sampled wells are shown in figure 9. For each site, a Stiff diagram geometrically depicts principal ionic constituents of the samples. Analyses of ground-water samples collected in Sandy Creek basin are given in table 6.

In terms of ground-water types, calcium was a principal cation in samples from all four sites, but the sites differed considerably in anionic character. The waters at wells TU-53, ST-52, and C-12 were in a neutral pH range, whereas at C-11 the water was slightly acidic. The wells are located along drainage systems downstream from areas where coal is being mined. With respect to the median values for all 24 ground-water sites sampled in 1987-88 (table 3), wells ST-52, C-12, and C-11 were relatively low in dissolved sulfate and dissolved solids. At well TU-53, however, the concentration of several constituents was greater than the median value.

With respect to OEPA standards for public supply, the limit for dissolved-solids (500 mg/L) was exceeded at TU-53, and the limits for dissolved iron (300 µg/L) and manganese (50 µg/L) were exceeded at TU-53, C-12, and ST-52. At a pH of 5.43, C-11 was the most acidic of the four wells. Significantly, with respect to the constituents listed earlier in the OEPA standard and for public water supply, well C-11 was within the standards. The well is not used as a potable water supply, however.

Middle Tuscarawas River and Sugar Creek Basin

The area selected for intensive study is a combination of two subbasins. The Sugar Creek subbasin lies partly in Wayne, Stark, Tuscarawas, and Holmes Counties. The Middle Tuscarawas River subbasin lies partly in Stark and Tuscarawas Counties. The drainage divide between the two basins is east of and closely parallel to Sugar Creek (fig. 11). Both streams flow essentially southward and join at Dover, Ohio.

Slightly more than the northern half of the combined area of the two subbasins was covered by glaciation. The glacial boundary also separates the Glaciated Allegheny Plateau and Unglaciated Allegheny Plateau sections of the Appalachian Plateaus Province (Fenneman, 1938).

A geometric configuration that represents the concentration, expressed as milliequivalence, of the common ionic constituents analyzed at the site represented by the figure.

Table 6.--Water-quality data for ground-water sites in Sandy Creek basin, August 1987 [°C, degrees Celsius; mg/L, milligrams per liter; µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius; --, data not available]

8	Depth to water below land- urface datum	Spe- cific con- duc-		Temper-	Oxygen,	Hard- ness, total (mg/L	Hard- ness, noncar- bonate	Calcium, dis- solved	Magne- sium, dis- solved
	(feet)	(µS/cm)	pН	(°C)	solved (mg/L)	CaCO ₃)	(mg/L as CaCO ₃)	(mg/L as Ca)	(mg/L as Mg)
4038300812207	00 TU-5	3 US POST	OFFICE A	T SANDYVIL	LE OH (LA	T 40 38	30N LONG	081 22 070	đ)
AUG 1987 26		1,280	7.5	12.5	1.1	420	250	130	22
4038160811751	00 C-11	BELDEN A	ND BLAKE	NR MAGNOLI	A OH (LAT	40 38 1	6N LONG O	81 17 51W)
AUG 1987 26	28.40	400	5.4	14.0	5.4	89	79	24	7.1
4041150811520	00 ST-5	2 D GREEN	AT WAYNE	SBURG OH (LAT 40 41	15N LON	IG 081 15	20W)	
AUG 1987 26		380	6.7	12.5	1.9	120	0	33	10
4043170810915	00 C-12	R BECKER	NR MINER	VA OH (LAT	40 43 17	N LONG C	81 09 15W)	
AUG 1987									
26		360	6.5	11.5	1.5	160	0	47	10
-				Alk	a -		-		-
				ka- lini	ty,			ica, Soli	
				ity car tal, bona			de, di	s- resi	due oC
		Lved so	lved fi	eld fiel	d solv	ed so	lved (m	g/L di	.B-
		g/L (m Na) as	g/L (mg/ K) Ca	Las (mg/L	as (mg		g/L a Cl) Si		ved (/L)
	из	Na) as	K) Ca	CO ₃ CaCO	3) as S	0 ₄) as	CI) SI	2) (112	(11)
4038300812207	00 TU-5	3 US POST	OFFICE A	T SANDYVIL	LE OH (LA	T 40 38	30N LONG	081 22 07	1)
AUG 1987 26	4:	8 2	.3 1	68 16	9 110	20	0 12	6	63
40381608117510	00 C-11	BELDEN A	ND BLAKE	NR MAGNOLI	A OH (LAT	40 38 1	6N LONG O	81 17 51W)	
AUG 1987 26	34	4 1	.8	10 1	0 47	6	8 13	2	.38
40411508115200	00 ST-5	D GREEN	AT WAYNE	SBURG OH (LAT 40 41	15N LON	G 081 15	20W)	
AUG 1987			2	01 00		•	26 2		00
26	28	5 3	.2 1	91 20	2 6	.0	2.6 9	.5 1	92
40431708109150	00 C-12	R BECKER	NR MINER	VA OH (LAT	40 43 17	N LONG O	81 09 15W)	
AUG 1987 26	9	0.9 1	.2 1	74 18	2 9	.0	2.1 12	1	90

Table 6.--Water-quality data for ground-water sites in Sandy Creek basin, August 1987-Continued

Date	Solids, sum of constit- uents, dis- solved (mg/L)	Alu- minum total recov- erable (µg/L as Al)	Alu- minum, dis- solved (µg/L as Al)	Iron, total recov- erable (µg/L as Fe)	Iron, dis- solved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	Carbon, organic dis- solved (mg/L as C)
403830081220700	TU-53 US	POST OFFI	CE AT SAN	DYVILLE O	H (LAT 40	38 30N L	ONG 081 2	22 07W)
AUG 1987 26	630	10	<10	6,700	4,200	810	800	1.0
403816081175100	C-11 BELD	EN AND BL	AKE NR MA	GNOLIA OH	(LAT 40 3	88 16N LO	NG 081 17	51W)
AUG 1987 26	201	90	70	80	26	40	38	0.6
404115081152000	ST-52 D G	REEN AT W	AYNESBURG	OH (LAT	40 41 15N	LONG 081	15 20W)	
AUG 1987 26	209	10	<10	1,700	1,700	190	190	0.5
404317081091500	C-12 R BE	CKER NR M	INERVA OH	(LAT 40	43 17N LON	IG 081 09	15W)	
AUG 1987 26	197	20	<10	750	780	730	730	0.7

Figure 11.--Middle Tuscarawas River and Sugar Creek basin (G), showing surface-water sites, ground-water sites and stiff diagrams for ground-water sites.

The southern third of the study basin area is a maturely dissected upland with local relief on the order of 300 ft. Glaciation has greatly subdued the northern half of the area. Locally, the terrain ranges from relatively featureless broad valleys to gently rolling upland. For most of its length, the valley in which Sugar Creek flows is relatively broad. Several of its tributaries that drain the southwestern part of the study area, in contrast, have fairly narrow valleys. Upstream from Dover to the Stark County line, the Tuscarawas Valley is relatively narrow and steep-sided.

Geologic Setting

Major bedrock units underlying the basin, in ascending order of age, consist of shales of Mississippian age and sandstones and coal-bearing strata of Pennsylvanian age. The oldest units are the Cuyahoga and Logan Formations, of Mississippian age (Multer, 1967), which lie below a covering of glacial drift in the valley floors of the northwestern part of the basin in Wayne County. To the south and east, these are followed by the Pottsville, Allegheny, and Conemaugh Formations of Pennsylvanian age (fig. 4). The Conemaugh is limited to ridge-tops along the eastern and southern extremities of the area. Structurally, the stratigraphic section exhibits a gentle eastward regional dip.

Most of the coal produced in the basin is from the Allegheny Formation (individual coal units are identified in figure 4). The Allegheny is present in patches over much of the area. Most surface-mining activity is in the southern third of the basin. The Lower Kittanning (No. 5) and the Middle Kittanning (No. 6) coals are the principal units being mined. Other Allegheny units being mined include the Brookville (No. 4) and the Strasburg (No. 5A). The Upper Freeport (No. 7) coal at the top of the Allegheny is missing over much of the area because of erosion. Three Pottsville coals, that are present not far below the base of the Allegheny, the Lower Mercer (No. 3), Upper Mercer (No. 3A), and the Tionesta (No. 3B), are mined locally.

Both unconsolidated and bedrock aquifers are important sources of water supply in the basin. The unconsolidated aquifer consists of thick deposits of sand and gravel that are present in much of the glaciated area and in the outwash valleys to the south. Well yields in these sources can exceed 1,000 gal/min (Schmidt, 1962). Of the bedrock aquifer, the Pottsville sandstones from which well yields of 500 gal/min have been reported, are the most important. Also available are shallow local supplies in sandstone, limestone, and coal units of the Allegheny Formation.

On figure 4, these formations are not broken out. Undifferentiated Mississippi is shown.

Productive shallow aquifers are limited to alluvial sand and gravel deposits. Most of these aquifers are in the northern half of the study area and are not greatly affected by surface-mining operations. However, the lower part of Sugar Creek passes through actively mined areas, and, in places, sand and gravel are well developed sources of ground water. Several tributaries of Sugar Creek also drain the active mining areas. Alluvial fill along these tributaries is thin, and shallow wells typically tap the bedrock for supply.

Water Quality

Current mining activity is greater in the area drained by Sugar Creek and its tributaries than in the Middle Tuscarawas River subbasin. Therefore, surface-water sampling sites were selected to give a composite of conditions in the study basin. The ground-water sites were within or near the Sugar Creek valley where shallow productive aquifers are more extensive.

Surface water

The following surface-water sites were sampled in late October 1987.

Map in- dex num- ber	Site type	Site name	Drain- age area (square miles)
G-1	Long-term	Sugar C at Beach City Dam	
		at Beach City	160
G-2	do.	Newman C nr Massillon	38.2
G-3	Short-term	Newman C at Burton City	11.5
G-4	do.	Sippo C at Massillon	16.2
G-5	do.	Sugar C nr Orrville	28.1
G-6	do.	L Sugar C nr Orrville	17.9
G-7	do.	N F Sugar C nr W Lebanon	17.0
G-8	do.	Middle F Sugar C nr Brewster-	45.5
G-9	do.	S F Sugar C nr Sugar C	63.3
G-10	do.	E B S F Sugar C nr Sugar C	28.2
G-11	do.	Walnut C at Dundee	48.0
G-12	do.	Broad Rn at Strasburg	19.5

Table 7.--Water-quality data for surface-water sites in Middle Tuscarawas River and Sugar Creek basin, October 1987

[°C, degrees Celsius; ft³/s, cubic feet per second; mg/L, milligrams per liter; µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius; --, data not available]

	Instan- taneous dis- charge	Spa- cific con- duc- tance		Temper-	Acidity (mg/L as	Alka- linity, field (mg/L as	Sul- fate, dis- solved (mg/L as	
Date	(ft ³ /s)	(µS/cm)	рН	(°C)	CaCO3)	CaCO3)	SO ₄)	
3122980 G-8	M F SUGAR	C NR BRE	WSTER OH	(LAT 40 4	1 10N LONG	G 081 36	40W)	
OCT 1987 27	9.5	570	7.0	10.0		171	94	
04831081301000	G-4 SIP	PO C AT M	ASSILLON	OH (LAT 4	0 48 31N I	LONG 081	30 10W)	
OCT 1987 27	6.6	610	6.8	10.5		177	76	
3123000 G-1	SUGAR C A	B BEACH C	ITY DAM A	T BEACH C	ITY OH (L	AT 40 39	24N LONG	081 34 3
OCT 1987 27	24	680	6.9	9.0		200	72	
3116950 G-2	NEWMAN C	NR MASSIL	LON OH (I	AT 40 49	22N LONG	081 33 06	W)	
OCT 1987 27	3.0	850	7.4	10.0		251	120	
3123166 G-9	S F SUGAR	C NR SUG	ARCREEK C	H (LAT 40	31 25N L	ONG 081 3	6 52W)	
OCT 1987 28	9.8	1,200	6.6	8.5		115	350	
3123299 G-11	WALNUT C	AT DUNDEE	OH (LAT	40 35 12N	LONG 081	37 16W)		
OCT 1987 28	5.8	1,250	6.6	8.5		131	520	
03445081313200	G-12 BR	DAD RN AT	STRASBUR	G OH (LAT	40 34 451	LONG 08	1 31 32W)	
OCT 1987 28	2.6	1,300	6.8	6.0		80	720	
03108081364900	G-10 EB	SF SUGAR	C AT SUG	ARCREEK O	H (LAT 40	31 08N L	ONG 081 3	6 49W)
OCT 1987 28	4.8	1,050	6.6	6.5		82	470	
04858081464900	G-6 L St	JGAR C NR	ORRVILLE	OH (LAT	40 48 58N	LONG 081	46 49W)	
OCT 1987 27	1.9	765	7.4	10.0		216	68	
04300081394900	G-7 NF S	SUGAR C N	R WEST LE	BANON OH	(LAT 40 43	OON LON	G 081 39	49W)
OCT 1987 27	6.5	630	7.4	10.0	12	216	49	
05037081420700	G-3 NEW	AN CAT	BURTON CI	TY OH (LA	T 40 50 37	N LONG O	81 42 07W)
OCT 1987 27	0.81	1,350	7.5	10.0		305	75	
04906081464600	G-5 SUGA	AR C NR OI	RRVILLE O	H (LAT 40	49 06N LO	NG 081 4	6 46W)	
OCT 1987 27	4.9	760	7.0	9.5		208	80	

Table 7.--Water-quality data for surface-water sites in Middle Tuscarawas River and Sugar Creek basin, October 1987--Continued

Date			Alu- minum, total recov- erable (µg/L as Al)	dis-	Iron, total recov- erable (µg/L as Fe)	Iron, dis- solved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	
Date			as AL)	as AL)	as re)	as re)	as rm)	as rm;	
	3-8	MFS	UGAR C NR B	REWSTER	OH (LAT 4	0 41 10N 1	LONG 081	36 40W)	
OCT 1987 27			160	10	730	130	140	150	
404831081301	000	G-4	SIPPO C AT	MASSILL	ON OH (LA	T 40 48 3	IN LONG OF	81 30 10W)	
OCT 1987 27			360	30	1,300	270	210	190	
03123000	3-1	SUGAR	C AB BEACH	CITY DA	M AT BEAC	H CITY OH	(LAT 40 3	39 24N LONG 081 34	4 37W
OCT 1987 27			210	<10	700	170	110	90	
03116950 G	-2	NEWMA	N C NR MASS	ILLON OH	(LAT 40	49 22N LO	NG 081 33	06W)	
OCT 1987 27			110	<10	660	180	160	130	
03123166 G	-9	S F S	UGAR C NR S	UGARCREE	K OH (LAT	40 31 251	LONG 08	1 36 52W)	
OCT 1987 28			400	30	1,000	50	2,900	3,000	
03123299 G-	-11	WALNU'	T C AT DUND	EE OH (L	AT 40 35	12N LONG	081 37 161	J)	
OCT 1987 28			380	20	1,100	60	3,400	3,500	
403445081313	200	G-12	BROAD RN	AT STRAS	BURG OH (LAT 40 34	45N LONG	081 31 32W)	
OCT 1987 28			870	60	330	20 1	11,000	11,000	
403108081364	900	G-10	EB SF SUG	AR C AT	SUGARCREE	K OH (LAT	40 31 081	LONG 081 36 49W)
OCT 1987 28			510	10	1,200	40	4,000	4,100	
404858081464	900	G-6	L SUGAR C	NR ORRVII	LLE OH (L	AT 40 48 5	58N LONG C	081 46 49W)	
OCT 1987 27			120	20	380	90	110	100	
404300081394	900	G-7	NF SUGAR C	NR WEST	LEBANON	OH (LAT 40	43 00N I	ONG 081 39 49W)	
OCT 1987 27			210	<10	650	70	220	200	
405037081420	700	G-3	NEWMAN C A	T BURTON	CITY OH	(LAT 40 50	37N LONG	081 42 07W)	
OCT 1987 27			70	<10	710	260	170	160	
404906081464	600	G-5	SUGAR C NR	ORRVILLE	OH (LAT	40 49 06N	LONG 081	46 46W)	
OCT 1987 27			210	20	550	100	120	130	

Figure 12 is based on the 12 sites sampled. Results of the analyses of water samples from the 12 sites are listed in table 7. Water-quality analyses for the two long-term sites also are listed in table 21. Table 8 presents a summary of water-quality characteristics for the surface-water sites.

Table 8.--Ranges and medians for selected water-quality characteristics for surface-water sites in Middle Tuscarawas
River and Sugar Creek basin

[mg/L, milligrams per liter; ug/L, micrograms per liter; uS/cm, microsiemens per centimeter at 25 degrees Celsius]

Property or constituent	Range and locations (fig. 11)	Median
Specific conductance,	T. 2. 24	
in µS/cm	570(G-8) to 1,350(G-3)	808
pH	6.6(G-9,10,11) to $7.5(G-3)$	6.9
Alkalinity, in mg/L as CaCO ₃	80(G-12) to 305(G-5)	188
mg/L as SO _A	49(G-7) to 720(G-12)	87
Aluminum, total, in µg/L as Al	70(G-3) to 870(G-12)	210
Aluminum, dissolved, in ug/L as Al	<10(G-1,2,7) to 60(G-12)	15
Iron, total, in µg/L as Fe Iron, dissolved, in	330(G-12) to 1,300(G-4)	705
µg/L as Fe	20(G-12) to 270(G-4)	95
Manganese, total, in ug/L as Mn	110(G-1,6) to 11,000(G-12)	190
Manganese, dissolved, in µg/L as Mn	90(G-1) to 11,000(G-12)	175

In general, results of the synoptic sampling of the streams were consistent, considering location of each site with respect to currently active areas of surface mining. Sites G-9, G-10, G-11, and G-12 are all downstream not far from areas of active mining. At these sites, constituent values were mostly near the top of the ranges listed in table 8, except for pH and alkalinity, which were in the lower end of the range. One exception was below-median values for the amount of dissolved iron at these sites. Constituent levels at the two long-term sites, G-1 and G-2, were generally near the median values for the basin (table 8). The lowest pH value was 6.6 at three sites—not far below 6.9, the median for all sites in the basin.

Figure 12.--Box plots showing the range, percentiles, and median values of constituents at surface-water sites in Middle Tuscarawas River and Sugar Creek basin.

Ground water

Four wells were sampled in the study basin. The wells tap unconsolidated deposits of sand and gravel in alluvial or glacial outwash deposits. Well ST-51 is located in the glaciated part of the region, and the others are in an outwash area south of the glacial limit (fig. 11).

For each site shown in figure 11, a Stiff diagram geometrically depicts the principal ionic constituents of each sample. Results of analyses are listed in table 9.

As to water type, calcium was the principal cation, and bicarbonate and sulfate were the principal anions. The waters which range from pH 7.35 to 7.59 are slightly basic but very hard. In general, there were no unusual variations in the constituents analyzed in water from these wells. With respect to OEPA standards for public supply, well TU-51 had excessive levels of sulfate, dissolved solids, iron, and manganese. Well ST-51 was excessive in the amount of dissolved iron, and well TU-52 in the amount of manganese.

Lower Tuscarawas River Basin

The Lower Tuscarawas River basin covers the eastern third of Coshocton County and the southwestern half of Tuscarawas County (fig. 13). The Tuscarawas River, which flows southward from New Philadelphia, Ohio, gradually turns westward near Newcomerstown and continues to Coshocton, where the Walhonding River from the west and the Tuscarawas River join to form the Muskingum River. At Dover, Ohio, the subject basin receives the combined drainage of Sugar Creek and Middle Tuscarawas basins and other upstream tributary basins.

The path traversed by the Lower Tuscarawas River is fairly close to the eastern and southern boundaries of the basin. In the northeastern part of the basin the larger tributaries generally flow northward. In the remainder of the basin, the larger tributaries flow southward.

The Lower Tuscarawas River basin is within the Unglaciated Allegheny Plateau section of the Appalachian Plateaus Province (Fenneman, 1938). The topographic character of the region is essentially that of a thoroughly dissected upland through which the main stem of the Tuscarawas drainage system, in terms of its flood plain development, has cut a fairly wide swath. In contrast, the tributaries feeding the main stream are relatively short with narrow steep-sided valleys. Local relief in the main valley is negligible, but along the upland edges can be as much as 300 ft.

Table 9.--Water-quality data for ground-water sites in Middle Tuscarawas River and Sugar Creek basin, August 1987

[°C, degrees Celsius; mg/L, milligrams per liter; µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius; --, data not available]

Date	Depth to water below land- surface datum (feet)	Spe- cific con- duct- ance (µS/cm)	рН	Temper- ature (°C)	Oxygen, dis- solved (mg/L)	Hard- ness, total (mg/L as CaCO ₃)	Hard- ness, noncar- bonate (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne sium dis- solve (mg/L as Mg
404130081354	200 ST-5	D HOSTE	TLER NR	BREWSTER OF	(LAT 40	41 30N	LONG 081 3	5 42W)	
AUG 1987 25	36.80	640	7.6	10.5	1.2	310	120	87	23
403742081331	800 TU-50	BECKERS	FALLS I	ARMS NR STE	ASBURG OH	(LAT 4	0 37 42N I	ONG 081 33	18W)
AUG 1987 25	19.58	685	7.4	11.0	3.8	330	96	99	19
403543081321	800 TU-5	L ELLIC	TT AT ST	RASBURG OH	(LAT 40 3	5 43N L	ONG 081 32	18W)	
AUG 1987 25	34.85	850	7.5	11.0	1.7	450	290	110	43
403255081295	800 TU-5	ZIMMER	PATIENT	CARE NR DOV	ER OH (LA	T 40 32	55N LONG	081 29 58W)
AUG 1987 26		685	7.4	10.5	0.9	330	180	94	24
	di sol (mg	lium, s s- d ved so s/L (m	ium, li is- t lved f	Alka- linit car car car linity car car linity car car lield fiel /L as (mg/L acO ₃ Caco	ty, - Sulf te, dis d solv as (mg	ed so	ide, di dis- sol olved (m mg/L a	g/L di	ved
404130081354	200 ST-51	D HOSTE	TLER NR	BREWSTER OF	(LAT 40	41 30N	LONG 081 3	5 42W)	
AUG 1987 25	7	.9 1	.4	193 19	6 7	0	47 1	.7 3	77
403742081331	800 TU-50	BECKERS	FALLS F	ARMS NR STR	ASBURG OH	(LAT 4	0 37 42N L	ONG 081 33	18W)
AUG 1987 25	7	.2 6	.8	230 23	6 4	4	24 13	3	99
03543081321	800 TU-51	L ELLIO	TT AT ST	RASBURG OH	(LAT 40 3	5 43N L	ONG 081 32	18W)	
AUG 1987 25	7	.9 2	.0	159 16	0 30	0	10 13	6	16
03255081295	800 TU-52	ZIMMER	PATIENT	CARE NR DOV	ER OH (LA	T 40 32	55N LONG	081 29 58W)
AUG 1987 26	10	1	.9	153 15	4 18	0	19 11	4	44

Table 9.--Water-quality data for ground-water sites in Middle Tuscarawas River and Sugar Creek basin, August 1987--Continued

Date	Solids, sum of constit- uents, dis- solved (mg/L)	Alu- minum total recov- erable (µg/L as Al)	Alu- minum, dis- solved (µg/L as Al)	Iron, total recov- erable (µg/L as Fe)	Iron, dis- solved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	Carbon, organic dis- solved (mg/L as C)
404130081354200	ST-51 D HO	STETLER N	R BREWSTE	R OH (LAT	40 41 3	ON LONG O	81 35 42W)
AUG 1987 25	355	20	<10	680	710	180	24	0.6
403742081331800	TU-50 BECK	ERS FALLS	FARMS NE	STRASBUR	G OH (LA	T 40 37 4	2N LONG O	81 33 18W
AUG 1987 25	351	20	<10	20	3	<10	<1	0.7
403543081321800	TU-51 L EL	LIOTT AT	STRASBURG	OH (LAT	40 35 43	N LONG 08	1 32 18W)	
AUG 1987 25	582	20	<10	500	580	100	93	0.5
403255081295800	TU-52 ZIMM	ER PATIEN	CARE NE	DOVER OF	(LAT 40	32 55N L	ONG 081 29	9 58W)
AUG 1987 26	432	20	<10	200	220	130	130	0.5

Figure 13.--Lower Tuscarawas River basin (I), showing surface-water sites, ground-water sites and stiff diagrams for ground-water sites.

Geologic Setting

The stratigraphic section consists of gently eastward—and southeastward—dipping units of Pennsylvanian age. The units, in ascending order of age, are: the Pottsville, Allegheny, and Conemaugh Formations. The Pottsville exists extensively in hillsides and valley bottoms in Coshocton County and is mostly confined to valley bottoms in Tuscarawas County. The Allegheny Formation, which forms most of the ridges, is patchy in Coshocton County but becomes more extensive to the east in Tuscarawas County. It forms the floor of the Tuscarawas Valley south of New Philadelphia to Gnadenhutten. Many scattered remnants of the Conemaugh Formation are present in Coshocton County, but they become more extensive in Tuscarawas County, especially southeast of the Tuscarawas River.

Several coals are present in the Pottsville and Allegheny Formations, but, of these, the Lower Kittanning No. 5, Middle Kittanning No. 6, and Upper Freeport No. 7 coals within the subject area have shown the greatest production and reserves (Brant and Delong, 1960). Most of the surface coal-mining activity is north and west of the Tuscarawas Valley in the upland section of the area.

Aquifers in the Lower Tuscarawas River basin include bedrock sources in sandstones of the Pottsville Formation. Yields to wells generally are adequate for domestic purposes. Similar but more localized sources are present in the Allegheny Formation. In contrast, the assemblage of sands and gravels that constitute the unconsolidated aquifer in the Tuscarawas valley is the principal ground-water source in the area. In places, these materials can yield as much as 1,000 gal/min to wells (Walker, 1962a). Water levels, which are affected by the stage of the Tuscarawas River for the most part, fluctuate about 1 to 3 ft throughout the year.

Water Quality

The two long-term surface-water sites were located near the mouth of important tributary systems that drain coal-mining areas. The short-term sites were located to include the effects of drainage from both actively mined areas as well as abandoned-mine areas. Four wells were sampled to provide some representation of baseline ground-water quality in shallow-productive aguifers.

Surface water

The following streams at the indicated locations were sampled in late October 1987.

Map in- dex num- ber	Site type	Site name	Drain- age- area (square miles)
I-1	Long-term	White Eyes C nr Fresno	52.1
I-2	do.	Buckhorn C at Newcomerstown	22.9
I-3	Short-term	Stone C nr New Philadelphia	25.2
I-4	do.	Oldtown C at New Philadelphia	18.6
I-5	do.	Beaverdam C nr New Philadelphia	20.8
I-6	do.	Frys C nr Gnadenhutten	5.7
I-7	do.	Dunlap C nr Newcomerstown	18.1
I-8	do.	Browning Rn nr Newcomerstown	7.1
I-9	do.	Evans C nr West Lafayette	21.0
I-10	do.	White Eyes C at Fresno	14.8
I-11	do.	W F White Eyes C nr Fresno	20.0
I-12	do.	E F White Eyes C nr Fresno	12.4

Figure 14 is based on the 12 sites sampled at this time. Results of analyses of water samples from the 12 sites are listed in table 10. Water-quality analyses for the two long-term sites also are listed in table 21. Table 11 presents a summary of water-quality characteristics for the surface-water sites.

Figure 14.--Box plots showing the range, percentiles, and median values of constituents at surface-water sites in Lower Tuscarawas River basin.

Table 10.--Water-quality data for surface-water sites in Lower Tuscarawas River basin, October 1987

[°C, degrees Celsius; ft³/s, cubic feet per second; mg/L, milligrams per liter; µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius; --, data not available]

	Instan- taneous dis- charge	Spe- cific con- duc- tance		Temper- ature	Acidity (mg/L as	Alka- linity, field (mg/L as	Sul- fate, dis- solved (mg/L as
Date	(ft ³ /s)) (µS/cm)	pН	(°C)	CaCO3)	CaCO3)	so ₄)
401805081394500	I-9 EVA	NS C NR W	LAFAYET	TE OH (LAT	40 18 051	LONG 08	1 39 45W)
OCT 1987 27	3.2	450	7.5	9.5	-	83	71
401940081441400	I-12 E F	WHITE EYE	S C NR	FRESNO OH	(LAT 40 19	40N LONG	G 081 44 14W)
OCT 1987 27	1.1	455	7.7	7.0		86	79
03129100 I-1	WHITE EYE	S C NR FRE	SNO OH	(LAT 40 18	17N LONG	081 45 01	lW)
OCT 1987 26	5.0	460	7.4	9.0		92	79
401959081443300	I-10 WH	ITE EYES C	AT FRE	SNO OH (LA	T 40 19 59	N LONG OF	31 44 33W)
OCT 1987 26	1.5	445	8.2	8.5		98	65
402738081262300	I-4 OLD	TOWN C AT	NEW PH	ILADELPHIA	OH (LAT 4	0 27 38N	LONG 081 26 23W)
OCT 1987 28	2.8	1,050	7.4	5.0		74	510
402841081285900	I-3 STO	NE C (59-1	1) NR NI	W PHILADE	LPHIA OH (LAT 40 28	41N LONG 081 28
OCT 1987 28	5.7	610	7.4	5.0		73	150
402226081280300	I-6 FRYS	S C NR GNA	DENHUTTI	EN OH (LAT	40 22 26N	LONG 081	28 03W)
OCT 1987 28	0.80	1,100	8.1	8.0		156	520
01616081313900	I-8 BROW	NING RN N	R NEWCON	ERSTOWN OF	H (LAT 40	16 16N LO	NG 081 31 39W)
OCT 1987 27	0.49	510	7.4	8.5		82	150
01548081311700	I-7 DUNI	AP C NR NI	EWCOMERS	TOWN OH (I	AT 40 15	48N LONG	081 31 17W)
OCT 1987 27	1.0	345	7.6	8.5		112	28
02011081450500	I-11 W F	WHITE EYE	S C NR	FRESNO OH	(LAT 40 20	0 11N LONG	G 081 45 05W)
OCT 1987 26	1.8	430	7.6	8.0		90	82
01624081363400	I-2 BUCK	HORN C AT	NEWCOME	RSTOWN OH	(LAT 40 16	5 24N LONG	G 081 36 34W)
OCT 1987 27	3.4	490	7.5	8.5		79	100
02733081240400	I-5 BEAV	ERDAM C NR	NEW PH	ILADELPHIA	OH (LAT 4	0 27 33N	LONG 081 24 04W
OCT 1987 28	3.7	1,000				85	440

Table 10.--Water-quality data for surface-water sites in Lower Tuscarawas River basin, October 1987--Continued

Date		Alu- minum, total recov- erable (µg/L as Al)	Alu- minum, dis- solved (µg/L as Al)	recov- erable (µg/L	Iron, dis- solved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	
401805081394500	1-9	EVANS C NE	R W LAFAY	ETTE OH (LAT 40 18	05N LONG	081 39 45W)
OCT 1987 27		110	<10	2,100	330	630	570
401940081441400	I-12	E F WHITE	E EYES C	NR FRESNO	OH (LAT	40 19 40N	LONG 081 44 14W)
OCT 1987 27		80	10	1,400	270	240	240
03129100 I-1	WHITE	EYES C NR	FRESNO O	H (LAT 40	18 17N LO	ONG 081 4	5 01W)
OCT 1987 26		180	20	2,400	720	430	420
401959081443300	1-10	WHITE EY	ES C AT F	RESNO OH	(LAT 40 19	59N LON	G 081 44 33W)
OCT 1987 26		50	20	1,200	90	240	240
402738081262300	1-4	OLD TOWN	AT NEW	PHILADELP	HIA OH (LA	AT 40 27	38N LONG 081 26 23W)
OCT 1987 28		220	30	300	50	2,400	2,400
402841081285900	I-3	STONE C (59-11) NR	NEW PHIL	ADELPHIA C	H (LAT 4	0 28 41N LONG 081 28
OCT 1987 28		300	30	1,000	190	970	950
402226081280300	1-6	FRYS C NR	GNADENHU	TTEN OH (LAT 40 22	26N LONG	081 28 03W)
OCT 1987 28		60	20	300	60	350	360
401616081313900	1-8	BROWNING F	RN NR NEW	COMERSTOW	N OH (LAT	40 16 16	N LONG 081 31 39W)
OCT 1987 27		30	20	1,100	320	400	390
401548081311700	I-7	DUNLAP C N	NR NEWCOM	ERSTOWN O	H (LAT 40	15 48N L	ONG 081 31 17W)
OCT 1987 27		130	10	1,000	160	170	160
402011081450500	I-11	W F WHITE	E EYES C	NR FRESNO	OH (LAT 4	0 20 11N	LONG 081 45 05W)
OCT 1987 26		60	10	820	360	120	160
401624081363400	I-2	BUCKHORN C	AT NEWC	OMERSTOWN	OH (LAT 4	0 16 24N	LONG 081 36 34W)
OCT 1987 27		100	320	730	410	610	570
402733081240400	I-5	BEAVERDAM	C NR NEW	PHILADEL	PHIA OH (I	AT 40 27	33N LONG 081 24 04W
OCT 1987 28		160	30	380	80	300	490

Table 11.--Ranges and medians for selected water-quality characteristics for surface-water sites in Lower Tuscarawas River basin

[mg/L, milligrams per liter; μ g/L, micrograms per liter; μ S/cm, microsiemens per centimeter at 25 degrees Celsius]

Property or constituent	Range and locations (fig. 13)	Median
Specific conductance, in		
μS/cm	345(I-12) to $1,100(I-6)$	475
pH	7.4(I-2,4,5,8) to $8.2(I-10)$	7.5
Alkalinity, in mg/L as		
CaCO2	73(I-3) to 156(I-6)	85
Sulfate, dissolved, in		
mg/L as SO ₄	28(I-7) to 520(I-6)	91
Aluminum, total, in		
ug/L as Al	30(I-8) to 300(I-3)	105
Aluminum, dissolved, in		
µg/L as Al	<10(I-9) to 320(I-2)	20
Iron, total, in ug/L		
as Fe	300(I-4,6) to $2,400(I-1)$	1,000
Iron, dissolved, in		2.0
ug/L as Fe	50(I-4) to 720(I-1)	230
Manganese, total, in		
ug/L as Mn	170(I-7) to $2,400(I-4)$	415
Manganese, dissolved, in		
ug/L as Mn	160(I-7,11) to $2,400(I-4)$	405

All of the surface-water sites from which the synoptic water-quality samples were collected are on tributary systems of the Tuscarawas River. Active areas of coal mining are more widely scattered throughout the basin than in Sandy Creek or Middle Tuscarawas River and Sugar Creek basins. Coal mining has taken place somewhere upstream from all sites, but, based on the analyses, the sites most affected by drainage from surface mining are I-3, I-4, and I-6 (fig. 13). The streams which range from 7.4 to 8.2 in pH are all mildly basic, which suggests that some attenuation of constituents carried from mining areas is probably taking place in the streams above the sampling sites.

Ground water

The four wells sampled in the study basin all tap unconsolidated deposits of sand and gravel. The sediments along the Tuscarawas River which are tapped by three of the wells are derived partly from glacial outwash. Well TU-49 taps the alluvial material along Frys Creek (fig. 13), a tributary to the Tuscarawas River. Most of the many domestic wells in the subject area outside the main valley of the Tuscarawas River are completed in bedrock. Analyses of ground-water samples for this basin are listed in table 12.

The water-quality analysis for well TU-49 suggests an influence from coal-mining activity nearby. Although the pH was in a neutral range, concentrations of dissolved solids, sulfate, iron, and manganese were much greater than in the other wells sampled in the basin. At TU-49, OEPA standards were exceeded for iron and manganese and for dissolved solids when averaged monthly (see footnote, p. 24). Sulfate was equal to the upper limit suggested by OEPA.

The dominant ions indicated by the Stiff diagrams (fig. 13) show that water samples were generally calcium bicarbonate in water type. In two samples, sulfate was an important constituent, also.

Short and Wheeling Creeks Basin

The Short and Wheeling Creeks basin is a combination of two subbasins that are tributaries to the Ohio River (fig. 15). The basin has a combined drainage area of 317 mi. The principal streams are Short Creek and Wheeling Creek, both of which generally flow eastward. About half of the study area lies in the Wheeling Creek drainage system. Both subbasins include several short streams that flow directly into the Ohio River.

Most of the Wheeling Creek subbasin is in the northern third of Belmont County and a small part of Harrison County. The area drained by Short Creek and other tributaries to the Ohio River is in the southeastern corner of Harrison County and the southern part of Jefferson County.

The study area is bordered on the west by the Flushing escarpment, which is also the drainage divide between the Muskingum drainage system on the west and several drainage systems on the east that empty into the Ohio River. The northern and southern boundaries that divide this basin from other study basins (fig. 1) are arbitrarily placed between the principal streams near their confluence with the Ohio River. Thus, each of the principal basins may include minor drainage areas that flow directly into the Ohio River.

Table 12.~-Water-quality data for ground-water sites in Lower Tuscarawas River basin [°C, degrees Celsius; mg/L, milligrams per liter; µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius; --, data not available]

AUG 1987 24 23.12 635 7.5 12.0 1.2 320 90 94 401800081324500 TU-47 ECHO POINT HARDWOODS NR PORT WASHINGTON OH (LAT 40 18 00N LONG 0 AUG 1987 24 10.11 540 8.0 12.5 7.8 230 85 64 402532081241400 TU-48 L CONKEY NR TUSCARAWAS OH (LAT 40 25 32N LONG 081 24 14W) AUG 1987 25 40.63 695 7.6 11.5 5.8 330 120 95 402224081292400 TU-49 S JOHNSON NR GNADENHUTTEN OH (LAT 40 22 24N LONG 081 29 24W) AUG 1987 25 24.91 940 7.1 11.5 1.0 450 200 130 Sodium, Sodium, Sium, linity carr Sulfate ride, discolved discolved solved field (mg/L as solved 1987) 24 3.7 1.3 232 234 82 19 12 400 401800081324500 TU-47 ECHO POINT HARDWOODS NR PORT WASHINGTON OH (LAT 40 18 00N LONG 0 AUG 1987) 24 19 1.2 141 143 75 23 10 328 402532081241400 TU-48 L CONKEY NR TUSCARAWAS OH (LAT 40 25 32N LONG 081 24 14W)	
24 23.12 635 7.5 12.0 1.2 320 90 94 401800081324500 TU-47 ECHO POINT HARDWOODS NR PORT WASHINGTON OH (LAT 40 18 00N LONG 0 AUG 1987 24 10.11 540 8.0 12.5 7.8 230 85 64 402532081241400 TU-48 L CONKEY NR TUSCARAWAS OH (LAT 40 25 32N LONG 081 24 14W) AUG 1987 25 40.63 695 7.6 11.5 5.8 330 120 95 402224081292400 TU-49 S JOHNSON NR GNADENHUTTEN OH (LAT 40 22 24N LONG 081 29 24W) AUG 1987 25 24.91 940 7.1 11.5 1.0 450 200 130 Sodium, Sium, linity car- linity, car- side, dis- residu dis- dis- solved solved field field solved (mg/L as solved at 180 solved solved field field solved solved (mg/L as solved as Na) as K) CaCO ₃ CaCO ₃ as SO ₄) as C1) S1O ₂) (mg/L 401620081415300 CS-148 KOEBEL NURSERY NR W LAFAYETTE OH (LAT 40 16 20N LONG 081 41 53W AUG 1987 24 3.7 1.3 232 234 82 19 12 400 401800081324500 TU-47 ECHO POINT HARDWOODS NR PORT WASHINGTON OH (LAT 40 18 00N LONG 04 AUG 1987 24 19 1.2 141 143 75 23 10 328	
AUG 1987 24 10.11 540 8.0 12.5 7.8 230 85 64 402532081241400 TU-48 L CONKEY NR TUSCARAWAS OH (LAT 40 25 32N LONG 081 24 14W) AUG 1987 25 40.63 695 7.6 11.5 5.8 330 120 95 402224081292400 TU-49 S JOHNSON NR GNADENHUTTEN OH (LAT 40 22 24N LONG 081 29 24W) AUG 1987 25 24.91 940 7.1 11.5 1.0 450 200 130 Sodium, Sium, linity, car, Sulfate ride, dis-residu dis-dis-total, bonate, dis-dis-solved at 180 solved solved field field solved solved (mg/L as Solved as Na) as K) CaCO ₃ CaCO ₃) as SO ₄) as CI) SiO ₂) (mg/L 401620081415300 CS-148 KOEBEL NURSERY NR W LAFAYETTE OH (LAT 40 16 20N LONG 081 41 53W AUG 1987 24 3.7 1.3 232 234 82 19 12 400 401800081324500 TU-47 ECHO POINT HARDWOODS NR PORT WASHINGTON OH (LAT 40 18 00N LONG 0 AUG 1987 24 19 1.2 141 143 75 23 10 328	21
24 10.11 540 8.0 12.5 7.8 230 85 64 402532081241400 TU-48 L CONKEY NR TUSCARAWAS OH (LAT 40 25 32N LONG 081 24 14W) AUG 1987 25 40.63 695 7.6 11.5 5.8 330 120 95 402224081292400 TU-49 S JOHNSON NR GNADENHUTTEN OH (LAT 40 22 24N LONG 081 29 24W) AUG 1987 25 24.91 940 7.1 11.5 1.0 450 200 130 Potas- Alka- linity, car- Sulfate ride, dis- residu dis- dis- solved dis- total, bonate, dis- dis- solved at 180 solved solved (mg/L (mg/L as (mg/L as (mg/L as (mg/L as solved (mg/L dis- solved as Na) as K) CaCO ₃ CaCO ₃) as SO ₄) as C1) SiO ₂) (mg/L 401620081415300 CS-148 KOEBEL NURSERY NR W LAFAYETTE OH (LAT 40 16 20N LONG 081 41 53W AUG 1987 24 3.7 1.3 232 234 82 19 12 400 401800081324500 TU-47 ECHO POINT HARDWOODS NR PORT WASHINGTON OH (LAT 40 18 00N LONG 0 AUG 1987 24 19 1.2 141 143 75 23 10 328	32 45
AUG 1987 25 40.63 695 7.6 11.5 5.8 330 120 95 402224081292400 TU-49 S JOHNSON NR GNADENHUTTEN OH (LAT 40 22 24N LONG 081 29 24W) AUG 1987 25 24.91 940 7.1 11.5 1.0 450 200 130 Potas- Alka- linity, car- Sulfate ride, dis- residu dis- dis- total, bonate, dis- dis- solved at 180 solved solved field field solved solved (mg/L dis- (mg/L as (mg/L as (mg/L as (mg/L as solved as Na) as K) CaCO ₃ CaCO ₃) as SO ₄) as C1) SiO ₂) (mg/L 401620081415300 CS-148 KOEBEL NURSERY NR W LAFAYETTE OH (LAT 40 16 20N LONG 081 41 53W AUG 1987 24 3.7 1.3 232 234 82 19 12 400 401800081324500 TU-47 ECHO POINT HARDWOODS NR PORT WASHINGTON OH (LAT 40 18 00N LONG 081 AUG 1987 24 19 1.2 141 143 75 23 10 328	16
25 40.63 695 7.6 11.5 5.8 330 120 95 402224081292400 TU-49 S JOHNSON NR GNADENHUTTEN OH (LAT 40 22 24N LONG 081 29 24W) AUG 1987 25 24.91 940 7.1 11.5 1.0 450 200 130 Potas- Alka- linity, Car- Sulfate ride, dis- residu dis- dis- total, bonate, dis- dis- solved at 180 solved solved field field solved solved (mg/L dis- (mg/L (mg/L (mg/L as (mg/L as (mg/L as (mg/L as c))))) (mg/L as Na) as K) CaCO ₃ CaCO ₃) as SO ₄) as C1) SiO ₂) (mg/L AUG 1987 24 3.7 1.3 232 234 82 19 12 400 AUG 1987 24 19 1.2 141 143 75 23 10 328	
AUG 1987 25 24.91 940 7.1 11.5 1.0 450 200 130 Potas-Alka-linity car-Sulfate ride, dis-residu dis-dis-total, bonate, dis-solved at 180 solved solved field field solved solved (mg/L dis-(mg/L (mg/L (mg/L as solved as Na) as K) CaCO ₃ CaCO ₃) as SO ₄) as C1) SiO ₂) (mg/L 401620081415300 CS-148 KOEBEL NURSERY NR W LAFAYETTE OH (LAT 40 16 20N LONG 081 41 53W AUG 1987 24 3.7 1.3 232 234 82 19 12 400 401800081324500 TU-47 ECHO POINT HARDWOODS NR PORT WASHINGTON OH (LAT 40 18 00N LONG 0 AUG 1987 24 19 1.2 141 143 75 23 10 328	22
25 24.91 940 7.1 11.5 1.0 450 200 130 Potas- Alka- linity, Chlo- Silica, Solids Solids, sium, linity car- Sulfate ride, dis- residu dis- dis- total, bonate, dis- dis- solved at 180 solved solved field field solved solved (mg/L dis- mg/L as (mg/L as (mg/L as Solved as Na) as K) CaCO ₃ CaCO ₃ as SO ₄) as C1) SiO ₂) (mg/L 401620081415300 CS-148 KOEBEL NURSERY NR W LAFAYETTE OH (LAT 40 16 20N LONG 081 41 53W AUG 1987 24 3.7 1.3 232 234 82 19 12 400 401800081324500 TU-47 ECHO POINT HARDWOODS NR PORT WASHINGTON OH (LAT 40 18 00N LONG 081 AUG 1987 24 19 1.2 141 143 75 23 10 328	
Sodium, sium, linity, car- Sulfate ride, dis- residu dis- dis- solved at 180 solved solved field field solved solved (mg/L dis- solved as Na) as K) CaCO ₃ CaCO ₃ as SO ₄) as C1) SiO ₂) (mg/L as solved as Na) as K) CaCO ₃ CaCO ₃ as SO ₄) as C1) SiO ₂) (mg/L as SO ₄) as C1) SiO ₂) (mg/L as SO ₄) as C1) SiO ₂) (mg/L as SO ₄) as C1) SiO ₂) (mg/L as SO ₄) as C1) SiO ₂) (mg/L as SO ₄) as C1) SiO ₂) (mg/L as SO ₅) (mg/L as SO ₆) as C1) SiO ₂) (mg/L as SO ₆) (m	31
AUG 1987 24 3.7 1.3 232 234 82 19 12 400 401800081324500 TU-47 ECHO POINT HARDWOODS NR PORT WASHINGTON OH (LAT 40 18 00N LONG 0 AUG 1987 24 19 1.2 141 143 75 23 10 328	°c
24 3.7 1.3 232 234 82 19 12 400 401800081324500 TU-47 ECHO POINT HARDWOODS NR PORT WASHINGTON OH (LAT 40 18 00N LONG 0 AUG 1987 24 19 1.2 141 143 75 23 10 328	
AUG 1987 24 19 1.2 141 143 75 23 10 328	
24 19 1.2 141 143 75 23 10 328	1 32 45
02532081241400 TU-48 L CONKEY NR TUSCARAWAS OH (LAT 40 25 32N LONG 081 24 14W)	
AUG 1987 25 6.6 2.0 210 213 66 20 12 426	
02224081292400 TU-49 S JOHNSON NR GNADENHUTTEN OH (LAT 40 22 24N LONG 081 29 24W)	
AUG 1987 25 16 2.7 257 263 250 17 10 632	

Table 12.--Water-quality data for ground-water sites in Lower Tuscarawas River basin---Continued

Date	Solids, sum of constit- uents, dis- solved (mg/L)	minum	Alu- minum, dis- solved (µg/L as Al)	Iron, total recov- erable (µg/L as Fe)	Iron, dis- solved (µg/L as Fe)	Manga- nese, total recov- erable (ug/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	Carbon, organic dis- solved (mg/L as C)	
401620081415300	CS-148 KG	DEBEL NURS	SERY NR W	LAFAYETTE	TAI) HO	40 16 20N	LONG 081	41 53W)	
AUG 1987 24	373	20	<10	280	290	390	370		
401800081324500	TU-47 ECE	HO POINT H	ARDWOODS	NR PORT W	ASHINGTON	OH (LAT	40 18 00N	LONG 081	32 45W)
AUG 1987	293	20	10	740	6	10	5		
402532081241400	TU-48 L (CONKEY NR	TUSCARAWA	S OH (LAT	40 25 32	N LONG 08	1 24 14W)		
AUG 1987 25	350	20	<10	60	6	<10	<1	0.8	
402224081292400	TU-49 S 3	JOHNSON NE	GNADENHU	TTEN OH (LAT 40 22	24N LONG	081 29 2	4W)	
AUG 1987 25	613	10	10	1,200	710	950	890	1.1	

Figure 15.--Short and Wheeling Creeks basin (C), showing surface-water sites, ground-water sites and stiff diagrams for ground-water sites.

The basin lies entirely within the unglaciated Allegheny Plateau section of the Appalachian Plateaus Province. The terrain is characterized by a thoroughly dissected upland surface. In places, the upland is a broad, relatively flat surface that gives way abruptly to numerous steep-sided valleys with narrow bottoms. Local relief in the vicinity of the Ohio River Valley is as much as 500 ft.

Geologic Setting

Stratigraphic units present, in ascending order, are the Conemaugh and Monongahela Formations of Pennsylvanian age and the Waynesburg and Greene Formations that comprise the Dunkard Group of Pennsylvanian and Permian age (fig. 6). Structurally, the rocks have a southward to southeastward dip across the Short and Wheeling Creeks area. Throughout the study area, the Conemaugh is present in valley bottoms and hillsides.

In Harrison and Jefferson Counties, the Monongahela has a somewhat patchy distribution in upland areas along ridgetops in areas where erosion has cut deeply into the underlying Conemaugh Formation. In Belmont County, the Monongahela is present widely and, in places, is capped by units of Permian age. Along Wheeling Creek, erosion has cut down into the Conemaugh Formation, as is also the case in the Ohio River Valley.

In the Short and Wheeling Creeks basin, commercial coals are chiefly the Pittsburgh (No. 8), Meigs Creek (No. 9), Uniontown (No. 10), and Waynesburg (No. 11) coals in the Monongahela Formation and the Washington (No. 12) coal in the Greene Formation (fig. 6). A number of thin local coal beds present in the Conemaugh are of little commercial value in the Short and Wheeling Creeks area. The Allegheny Formation coals are extractable by underground mining only. In general, the coals of the Monongahela Formation are easily extractable by surface mining.

Coal beds that are being surface mined include the Pittsburgh, Redstone, Meigs Creek, Uniontown, Waynesburg, and Washington (Nos. 8, 8A, 9, 10, 11, and 12, respectively). Surface mining of the Pittsburgh and Redstone coals (Nos. 8 and 8A, respectively) is more prevalent in the northwestern and northern parts of the study area. Most surface mining for the Meigs Creek (No. 9) and Waynesburg (No. 11) coals is to the south, mostly in the Wheeling Creek subbasin. The Uniontown (No. 10) coal has a relatively low number of active mines. Surface mining of the Washington (No. 12) coal is prevalent in the southeastern part of the area, where the Permian section is thicker.

Ground-water resources are, at best, meager in bedrock areas exclusive of the Ohio River Valley (Schmidt, 1959). Nevertheless, many people still depend on the small local supplies that are available in the various sandstones, fractured limestones, and coal beds underlying the region. Because of population growth that has spread outward from the Ohio Valley, public water-supply lines have been laid in many areas. These systems draw much of their supply from the productive alluvial aquifer in the Ohio River Valley. Although unconsolidated alluvial sediments are present in many of the valleys, these sediments are relatively thin, and most water wells are completed in bedrock. These materials are important as a medium through which the shallow bedrock is recharged from precipitation, surface runoff, or streams through streambed infiltration.

Water Quality

Coal is surface mined in most of the Short and Wheeling Creeks basin. The largest areas not having any currently permitted locations are mainly areas where the Conemaugh Formation exists exclusively. Nevertheless, the lithologic makeup of any of the rock systems in the study area can affect both stream and ground-water quality such as an ability to buffer the pH of the system or by contribution of mineral constituents. Analytical results of both the surface-water and ground-water sampling show some of these influences.

Surface water

The following surface-water sites were sampled in early October 1988. Their locations are shown in figure 15.

Map in- dex num-			Drain- age area (square
ber	Site type	Site name	miles)
C-1	Long-term	Wheeling C bl Blaine	97.7
C-2	do.	Short C nr Dillonvale	123
C-3	Short-term	Wheeling C at Maynard	68.8
C-4	do.	Jug Rn nr Maynard	3.6
C-5	do.	Short C at Adena	63.9
C-6	do.	Long Rn nr Dillonvale	6.3
C-7	do.	Deep Rn at Yorkville	3.7

Figure 16.--Box plots showing the range, percentiles, and median values of constituents at surface-water sites in Short and Wheeling Creeks basin.

Table 13.--Water-quality data for surface-water sites in Short and Wheeling Creeks basin, October 1988

[°C, degrees Celsius; ft³/s, cubic feet per second; mg/L, milligrams per liter; µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius; --, data not available]

	Instan- taneous dis- charge	Spe- cific con- duc- tance		Temper-	Acidity (mg/L as	Alka- linity, field (mg/L as	Sul- fate, dis- solved (mg/L as	
Date	(ft ³ /s)	(µS/cm)	PН	(°C)	CaCO3)	CaCO3)	SO ₄)	
03111500 C-2	SHORT C N	R DILLONVA	LE OH (LAT 40 11	36N LONG (080 44 04	W)	_
OCT 1988 05	23	2,700	8.6	10.5		212	1,500	
03111465 C-5	SHORT C A	T ADENA OF	(LAT 4	0 13 09N L	ONG 080 52	2 22W)		
OCT 1988 05	7.3	3,150	8.5	12.5		210	1,900	
401158080484000	C-6 LON	G RN NR DI	LLONVAL	E OH (LAT	40 11 58N	LONG 080	48 40W)	
OCT 1988 06	0.38	3,000	8.1	5.5		122	1,800	
400859080424600	C-7 DEEP	RN AT YOR	KVILLE (OH (LAT 40	08 59N LC	NG 080 4	2 46W)	
OCT 1988 06	0.23	2,850	3.9	8.0	68		1,800	
03111548 C-1	WHEELING (C BL BLAIN	E OH (L	AT 40 04 0	IN LONG OF	80 48 31W)	
OCT 1988 06	12	2,700	8.3	8.5		263	1,400	
400639080524400	C-4 JUG	RN NR MAY	NARD OH	(LAT 40 0	6 39N LONG	080 52	44W)	
OCT 1988 06	0.23	1,150	8.1	10.0		181	480	
400728080524300	C-3 WHEI	ELING C (5	5-10) A	MAYNARD	OH (LAT 40	07 28N	LONG 080 52 43	3W)
OCT 1988 06	31	2,750	8.3	10.5		327	1,400	

Table 13.--Water-quality data for surface-water sites in Short and Wheeling Creeks basin, October 1988--Continued

Date		Alu- minum, total recov- erable (µg/L as Al)	Alu- minum, dis- solved (µg/L as Al)	Iron, total recov- erable (µg/L as Fe)	Iron, dis- solved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)
03111500 C-	2 SHOR	T C NR DIL	LONVALE O	H (LAT 40	11 36N LO	ONG 080 44	04W)
OCT 1988 05		200	100	340	20	30	30
03111465 C-	5 SHORT	C AT ADEN	A OH (LAT	40 13 09	N LONG 080	52 22W)	
OCT 1988 05		70	20	160	30	40	30
4011580804840	00 C-6	LONG RN N	R DILLONV	ALE OH (I	AT 40 11 5	58N LONG C	980 48 40W)
OCT 1988 06		780	50	3,700	200	160	170
4008590804246	00 C-7	DEEP RN A	r YORKVIL	LE OH (LA	AT 40 08 59	N LONG OS	0 42 46W)
OCT 1988 06		5,000	4,700	17,000	8,700	960	1,200
03111548 C-	1 WHEEL	ING C BL B	LAINE OH	(LAT 40 C	04 OIN LONG	080 48 3	1W)
OCT 1988 06		390	80	870	30	120	120
4006390805244	00 C-4	JUG RN NR	MAYNARD (OH (LAT 4	0 06 39N I	ONG 080 5	2 44W)
OCT 1988 06		100	60	150	30	70	60
4007280805243	00 C-3	WHEELING (C (55-10)	AT MAYNA	RD OH (LAT	40 07 28	N LONG 080 52 43W)
OCT 1988 06		100	60	170	20	30	20

Figure 16 is based on the seven sites sampled. Results of the analyses of water samples from the seven sites are listed in table 13. Water-quality analyses for the two long-term sites also are listed in table 21. Table 14 presents a summary of water-quality characteristics for the surface-water sites.

Table 14.--Ranges and medians for selected water-quality characteristics for surface-water sites in Short and Wheeling Creeks basin

[mg/L, milligrams per liter; µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius]

Property or constituent	Range and locations (fig. 15)	Median
Specific conductance,		
in uS/cm	1,150(C-4) to 3,150(C-5)	2,750
pH	3.90(C-7) to 8.60(C-2)	8.30
Alkalinity, in mg/L	(. ,,(,	
as CaCO ₃	0(C-7) to 327(C-3)	211
Sulfate, dissolved, in		
mg/L as SO ₄	480(C-4) to 1,900(C-5)	1,500
Aluminum, total, in		
ug/L as Al	70(C-5) to $5,000(C-7)$	200
Aluminum, dissolved, in		
ug/L as Al	20(C-5) to 4,700(C-7)	60
Iron, total, in ug/L		
as Fe	150(C-4) to 17,000(C-7)	340
Iron, dissolved, in		
ug/L as Fe	20(C-2,3) to 8,700(C-7)	30
Manganese, total, in		
ug/L as Mn	30(C-3) to $960(C-7)$	70
Manganese, dissolved, in		
ug/L as Mn	20(C-3) to 1,200(C-7)	70

Water-quality analyses of the seven surface-water sites show the effects of surface mining in the study basin, which is evidenced by high levels of specific conductance and dissolved sulfate (table 15). In some places, the amounts of iron, magnesium, and aluminum were especially high. However, water at only one of the seven sites (C-7) was strongly acidic. Samples from several sites were high in constituents commonly associated with acidic waters, but the pH values were, with the one exception, all neutral or alkaline, indicating considerable buffering of the stream waters. Samples from the two long-term sites (C-1 and C-2), though high in dissolved sulfates and specific conductance, were high in pH. Because of their downstream locations, there is probably an attenuation of iron,

Table 15.--Water-quality data for ground-water sites in Short and Wheeling Creeks basin [°C, degrees Celsius; mg/L, milligrams per liter; µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius; --, data not available]

Date	Depth to water below land- surface datum (feet)	Spa- cific con- duc- tance (µS/cs			mper- d	ygen, is- lved g/L)	Hard- ness, total (mg/L as CaCO ₃)	Har- nes nonc bona (mg/L CaC	s, Calc ar- di te sol as (m	cium, is- lved g/L Ca)	Magne- sium, dis- solved (mg/L as Mg)
400609080541	800 B-28	J MAT	IS NR ST	CLAIRSV	ILLE OH (LAT 40	06 091	LONG	080 54 18	BW)	
AUG 1988 24	23.17	1,25	8.9	13	3.0	0	43		0 1	10	4.3
400806080453	600 B-29	WM TA	BOTT NR	YORKVIL	LE OH (LA	T 40 0	8 06N I	ONG 08	0 45 36W))	
AUG 1988 25	19.10	1,32	7.9	1:	5.0	1.3	100		0 2	27	8.0
400915080433	100 B-30	GARY I	TILLER N	R YORKVI	LLE OH (L	AT 40	09 15N	LONG O	80 43 31	W)	
AUG 1988 25	7.52	1,596	7.4	1:	2.5	0	750	51	0 23	30	43
401140080490	200 JE-9	5 J BR	ANDI NR	DILLONVAL	LE OH (LA	T 40 1	1 40N I	ONG OS	0 49 02W)	
AUG 1988 25	8.22	1,17	7.5	1	1.5	2.4	520	29	0 1	50	35
	d: so: (m)	dium, is- lved g/L Na)	Potas- sium, dis- solved (mg/L as K)	Alka- linity total, field (mg/L as CaCO ₃	Alka- linity, car- bonate, field (mg/L as CaCO ₃)	Sulfi dis solv (mg as S	ate r ed s /L (Thio- ide, dis- colved mg/L s C1)	Silica, dis- solved (mg/L as SiO ₂)	Soli resi at l di sol (mg	due 80 °C s- ved
400609080541	800 B-28	J MAT	S NR ST	CLAIRSV	ILLE OH (LAT 40	06 091	LONG	080 54 18	BW)	
AUG 1988 24		280	1.1	461	461	8	9	50	8.4		789
400806080453	600 B-29	WM TAI	BOTT NR	YORKVILI	LE OH (LA	r 40 0	8 06N I	ONG OS	0 45 36W)		
AUG 1988		270	1.3	363	364	2.	5	150	7.1		738
25						AT 40	09 15N	LONG O	30 43 315	7)	
25	100 B-30	GARY 1	ILLER N	R YORKVII	TIR OH (I'	TT 40					
25	100 B-30	GARY 1	ILLER N	242	242	63		26	8.1	1,:	220
25 400915080433 AUG 1988		57	2.6	242	242	63	0	26	8.1		220

Table 15.--Water-quality data for ground-water sites in Short and Wheeling Creeks basin--Continued

Date	Solids sum of constit uents, dis- solved (mg/L)	minum - total	Alu- minum, dis- solved (µg/L as Al)	Iron, total recov- erable (µg/L as Fe)	Iron, dis- solved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	Carbon, organic dis- solved (mg/L as C)
400609080541800	B-28 J M	ATIS NR ST	CLAIRSVIL	LE OH (L	AT 40 06 0	9N LONG	080 54 18	W)
AUG 1988 24	795	50	<10	130	55	10	<1	0.8
400806080453600	B-29 WM	TALBOTT NR	YORKVILLE	OH (LAT	40 08 061	LONG 080	45 36W)	
AUG 1988 25	706	130	<10	240	<3	30	10	1.1
400915080433100	B-30 GAR	Y MILLER N	R YORKVILL	E OH (LA	r 40 09 15	I LONG OF	30 43 31W)
AUG 1988 25	1,140	40	<10	40	<3	10	1	0.9
401140080490200	JE-95 J	BRANDI NR	DILLONVALE	OH (LAT	40 11 401	N LONG 080	49 02W)	
AUG 1988 25	783	30	<10	60	14	10	6	0.8

manganese, and aluminum due to dilution. In addition, the presence of carbonate rocks in the area could have provided buffering which raised the pH value of the stream. As stated in figure 4, there is a larger proportion of limestone in the Monongahela Formation than in the other Pennsylvanian units. These, along with several thin limestones in the Conemaugh, could provide a stronger buffering system in the Short and Wheeling Creeks basin than in most of the other study basins.

Ground water

Locations of the sampled wells, including Stiff diagrams which depict the ionic character of the ground-water samples, are shown in figure 15. Analyses of ground-water samples are listed in table 15. All of the sites were located close to perennial streams. In general, the wells penetrated probably less than 30 ft of unconsolidated material before tapping the underlying bedrock.

All of the wells were relatively high in mineral content. As for ground-water type, the water from two wells was dominantly strongly sodium bicarbonate, and the water from remaining wells was calcium sulfate. The pH ranged from 7.4 to 8.9; water at two sites, JE-95 and B-30, was very hard.

With regard to OEPA water-quality standards for public supply, at a range of 738 to 1,220 mg/L for dissolved solids, the standards for the monthly average (500 mg/L) were greatly exceeded. The OEPA standard allows a maximum of 750 mg/L dissolved solids for single-event samples. However, iron, manganese, and chloride concentrations were less than the OEPA limits. At wells B-30 and JE-95, the sulfate content was considerably greater than the OEPA limit of 250 mg/L. Samples from wells B-29 and B-30, located along Deep Run, had pH levels of 7.90 and 7.40, respectively, which contrasts sharply with a pH of 3.90 measured for Deep Run less than a mile downstream from well B-30.

Upper Wills Creek Basin

The Upper Wills Creek basin, which is about 406 mi² in area, lies mostly in the southern third of Guernsey County and in the northeastern part of Noble County (fig. 17). Small parts of the basin lie in the northwestern corner of Monroe County, the southwestern corner of Belmont County, and the southeastern corner of Muskingum County.

The southwestern part of the basin is drained by branches of Buffalo Creek that meet at Pleasant City to form Wills Creek, which in turn follows a generally meandering northward course.

Figure 17.--Upper Wills Creek basin (K), showing surface water sites, ground-water sites and stiff diagrams for ground-water sites.

Two tributaries that separate Upper Wills Creek basin from Lower Wills Creek basin to the north are Leatherwood Creek, which enters Wills Creek from the east at Cambridge, and Chapman Creek, which enters from the west near Cambridge. A large part of the basin is drained by Seneca Fork, which enters Wills Creek near Buffalo.

The Upper Wills Creek basin is in the Unglaciated Allegheny Plateau section of the Appalachian Plateaus Province. Erosion of the land surface has produced a thoroughly dissected terrain, much of which is characterized by a relatively subdued surface with wide bottomlands and low hills. The more rugged parts are around the periphery of the basin, especially to the east, where the Flushing escarpment separates Muskingum-basin drainage from that of basins A, B, C, and D (fig. 1). Toward the center of the basin, streamflow is sluggish. Wetlands and poorly drained areas are not uncommon.

Geologic Setting

Stratigraphic units present in the Upper Wills Creek basin, in ascending order, are the Allegheny, Conemaugh, and Monongahela Formations of Pennsylvanian age and the Washington Formation of the Dunkard Group of Pennsylvanian and Permian age. Three areas of active surface mining include the upper watershed of Buffalo Fork near Cumberland, the vicinity of Pleasant City and Byesville, and mines scattered around the upper watershed of Leatherwood Creek near Quaker City (fig. 17).

Regionally, the rocks across the eastern half of Ohio dip southeastward about 30 ft/mi toward the Appalachian Basin. Locally, the system is modified by various minor structural features that produce reversals in the regional dip (Lamborn, 1951, p. 13). One such feature, the Cambridge Arch, causes the oldest units to appear at or near the surface in the vicinity of Wills Creek in the Cambridge area. As a result, the Upper Freeport (No. 7) coal at the top of the Allegheny Formation is at or near the surface.

The Conemaugh Formation is the most prevalent surficial unit in the Wills Creek basin. On the western and eastern edges of the basin, the Conemaugh is overlain by coal-bearing units of the Monongahela Formation. Surface mining of coal takes place in both areas. The Monongahela has a patchy distribution across Noble County along the southern part of the basin. Only scattered remnants of the Washington Formation in the Dunkard Group remain along the eastern edge of the basin.

Throughout the Upper Wills Creek basin, the underlying bedrock is not a high-yielding source of ground water, but, locally, it is an important source for domestic use. The area does not have any glacial outwash deposits, but, in some areas, valley fill deposits of sand and gravel can be as much as 50 ft

thick. With proper development, these sand-and-gravel sources can supply the needs of small industry or small public systems (Walker, 1962b). Relatively few wells yield solely from the permeable unconsolidated sediments and, instead, are usually completed in the underlying bedrock, into which considerable recharge from the saturated unconsolidated section is passed. Most of the Byesville municipal-supply wells along Chapman Creek and the public-supply wells for Pleasant City along Wills Creek are completed in this manner. Because of the prevalence of wetlands along Wills Creek, the ground-water potential of the unconsolidated section is not fully developed.

Water Quality

Six surface-water sites were used to obtain water-quality samples to assess differences in stream-water quality which could have resulted from nearby surface mining. The four ground-water sites were concentrated in the area of the basin where the presence of alluvial sediments along perennial streams, in combination with permeable layers in the underlying bedrock, provides conditions most favorable for the existence of a shallow productive aquifer.

Surface water

The following streams at the indicated locations were sampled in early October 1988.

Map in- dex num- ber	Site type	Site name	Drain- age area (square miles)
K-1	Long-term	Wills C at Pleasant City	406
K-2	Short-term	Leatherwood C nr Kipling	
K-3	do.	Chapman Rn at SR 209 nr	
		Byesville	13.7
K-4	do.	Buffalo F at Pleasant City	71.2
K-5	do.	Beaver C above Senecaville Reservoir nr Batesville	16.8
K-6	do.	Opossum Rn nr Senecaville	

Figure 18 is based on the six sites sampled. Results of the analyses of water samples from the six sites are listed in table 16. Water-quality analyses for the long-term site also are listed in table 21. Table 17 presents a summary of water-quality characteristics for the surface-water sites.

Figure 18.--Box plots showing the range, percentiles, and median values of constituents at surface-water sites in Upper Wills Creek basin.

Table 16.--Water-quality data for surface-water sites in Upper Wills Creek basin, October 1988

[°C, degrees Celsius; ft³/s, cubic feet per second; mg/L, milligrams per liter; µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius; --, data not available]

	Instan- taneous dis- charge	Spe- cific con- duc- tance	,	Temper- ature	Acidity	Alka- linity, field (mg/L as	Sul- fate, dis- solved (mg/L as		
Date	(ft ³ /s)	(µS/cm)	pН	(°C)	CaCO ₃)	CaCO ₃)	SO4)		
395404081191100	K-5 BEA	VER C AB	SENECAVILL	E LK NR	BATESVILLE	OH (LAT	39 54 04N	LONG 081	19 11W)
OCT 1988 04	0.14	730	8.2	13.5		229	210		
03140700 K-4	BUFFALO F	AT PLEAS	ANT CITY OF	H (LAT 3	39 54 15N L	ONG 081 :	33 14W)		
OCT 1988 04	4.1	2,350	7.8	15.0		258	1,300		
395417081323000	K-1 WIL	LS C AT P	LEASANT CIT	I) HO YI	LAT 39 54 1	7N LONG	081 32 30W)		
OCT 1988 04	4.0	2,380	7.9	15.5		250	1,200		
395444081273400	K-6 OPO	ssum RN N	R SENECAVII	LLE OH (LAT 39 54	44N LONG	081 27 34W)	
OCT 1988 05	0.05	550	7.7	11.5		169	65		
395923081294400	K-2 LEA	THERWOOD	C NR KIPLIN	IG OH (I	AT 39 59 2	3N LONG (081 29 44W)		
OCT 1988 05	0.63	1,000	7.7	10.5		150	390		
395858081341500	K-3 CHAI	PMAN RN A	T SR 209 NR	BYESVI	LLE OH (LA	T 39 58 5	8N LONG 08	1 34 15W)
OCT 1988 05	0.01	850	7.3	10.5		167	1,200		

Table 16.--Water-quality data for surface-water sites in Upper Wills Creek basin,
October 1988--Continued

Date		Alu- minum, total recov- erable (µg/L as Al)	minum dis- solved (µg/L	Iron, total recoverable (µg/L as Fe)	Iron, dis- solved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)			
395404081191100	K-5	BEAVER C	AB SENECA	AVILLE LK	NR BATESV	ILLE OH (1	LAT 39 54	04N LONG	081 19	11W)
OCT 1988 04		850	30	1,300	<10	190	110			
03140700 K-4	BUFFA	LO F AT P	LEASANT C	LTY OH (L	AT 39 54 1	5N LONG O	81 33 14W)			
OCT 1988 04		570	80	610	100	240	190			
395417081323000	K-1	WILLS C	AT PLEASA	NT CITY OF	I (LAT 39 5	54 17N LO	NG 081 32	30W)		
OCT 1988 04		460	40	550	50	240	190			
395444081273400	K-6	OPOSSUM	RN NR SENE	CAVILLE (OH (LAT 39	54 44N LO	ONG 081 27	34W)		
OCT 1988 05		270	20	710	120	920	830			
395923081294400	K-2	LEATHERW	OOD C NR I	CIPLING OF	I (LAT 39 5	59 23N LO	NG 081 29	44W)		
OCT 1988 05		300	30	450	60	200	130			
395858081341500	K-3	CHAPMAN	RN AT SR	209 NR BY	ESVILLE OH	(LAT 39 5	58 58N LON	IG 081 34	15W)	
OCT 1988 05		12,000	12,000	8,000	8,500	15,000	16,000			

Table 17.--Ranges and medians for selected water-quality characteristics for surface-water sites in Upper Wills Creek basin

[mg/L, milligrams per liter; µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius]

Property or constituent	Range and loca- tions (fig. 17)	Median
Specific conductance		
Specific conductance, in µS/cm	550(K-6) to 2,380(K-1)	925
pH	7.30(K-3) to 8.2(K-5)	7.75
Alkalinity, in mg/L as	7.30(K-3) CO 8.2(K-3)	1.13
CaCO ₃	150(K-2) to 258(K-4)	199
Sulfate, in mg/L as SO	65(K-6) to 1,300(K-4)	795
Sulfate, in mg/L as SO ₄ Aluminum, total, in	03(11 0) 00 1/300(11 1)	,,,,
ug/L as Al	270(K-6) to 12,000(K-3)	515
Aluminum, dissolved, in	270(11 07 00 127000(11 07	0.20
ug/L as Al	20(K-6) to 12,000(K-3)	35
	20(11 0) 00 22,000(11 0)	
ug/L as Fe	450(K-2) to 8,000(K-3)	660
Iron, dissolved, in		
ug/L as Fe	10(K-5) to 8,500(K-3)	80
Manganese, total, in		
μg/L as Mn	190(K-5) to 15,000(K-3)	240
Manganese, dissolved, in		
ug/L as Mn	109(K-5) to $16,000(K-3)$	190

Water samples from site K-3, which is located downstream from surface-mined areas, had the highest concentrations of the three metals analyzed and high concentrations of sulfate. None of the sampled stream sites was acidic, which indicates that some stream waters downstream from areas of coal mining were being neutralized by a buffering action.

Buffalo Fork and Buffalo Creek join to form Wills Creek about 0.5 mi upstream from long-term surface-water site K-l at Pleasant City, Ohio (fig. 17). Synoptic site K-4 on Buffalo Fork just upstream from the confluence of Buffalo Fork and Buffalo Creek is downstream from several active mining areas near Cumberland, Ohio, and less than a mile downstream from a recently opened (as of August 1988) 99-acre tract to mine the Freeport (No. 7) coal. Results of the synoptic water-sample collections made in October 1988 show little difference in the substance loads carried in the streams at K-4 and K-1, indicating little or no dilution by Buffalo Creek is taking place. Runoff from old mining areas near Mt. Ephraim, Ohio, at the upper reaches of the

Buffalo Creek watershed, could be contributing constituent loads to Wills Creek similar to those of Buffalo Fork. State of Ohio files do not indicate any currently active mining areas in the area drained by Buffalo Creek.

There is little if any mining activity south of Senecaville Reservoir (fig. 17) and only a small amount to the northeast. As might be expected, sites K-5 and K-6, in comparison with sites K-1, 3, and 4, have been little affected by surface-mining runoff. Site K-2 is some distance downstream from mining operations. Water quality there could have been modified by the distance the runoff has traveled.

Ground water

Analyses of ground-water samples for this basin are given in table 18. Two of the four sites sampled were municipal wells. Both GU-83, at Byesville's well field along Chapman Run, and GU-84, at Pleasant City's field along Wills Creek, are less than a mile downstream from active surface-mining operations. GU-86, a domestic well, is only a few hundred feet from an active mining area (ODNR permit D-0578). Another domestic well, GU-85, near Byesville, is several miles downstream from the nearest area of active mining (as of August 30, 1988, when sampled). Only iron and manganese levels exceed the OEPA standards. Stiff diagrams of the wells (fig. 17) indicate that the waters were a mixture of cation types. Bicarbonate was the principal anion constituent.

Upper Raccoon Creek Basin

The Upper Raccoon Creek basin has a drainage area of 384 mi. Most of the basin lies in the eastern half of Vinton County and small sections of Hocking County on the north, Athens and Meigs Counties on the east, and Gallia County on the southeast (fig. 19).

The basin includes all of the drainage to Raccoon Creek upstream from, but not including, Little Raccoon Creek, which enters Raccoon Creek below the town of Vinton in Gallia County. Raccoon Creek begins just south of New Plymouth where two branching tributaries meet. Raccoon Creek flows generally toward the south. The largest tributary is Elk Fork, which enters the Raccoon Creek near the center of the basin.

All of the Upper Raccoon Creek basin lies in the Unglaciated Allegheny Plateau section of the Appalachian Plateaus Province (Fenneman, 1938). Because of differences in rock types, such as those that exist between massive sandstone and clays, shales or friable sandstones, several erosional cycles have produced a land surface that ranges from one of long ridges and narrow valleys in

Table 18.--Water-quality data for ground-water sites in Upper Wills Creek basin, August 1988

[°C, degrees Celsius; mg/L, milligrams per liter; µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius]

Date	Depth to water below land- surface datum (feet)	Spe- cific con- duc- tance (µS/cm)	Нq	Temper- ature (°C)	Oxygen, dis- solved (mg/L)	Hard- ness, total (mg/L as CaCO ₃)	Hard- ness, noncar- bonate (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)
		*	•	ASANT CITY OF					20
AUG 1988	0100 00-0-	V 2222302	. 0		(1111 0)	54 272	DOI: OUL	33 01,	
30	27.42	915	8.0	12.0	1.8	290	0	64	31
39541808133	5800 GU-86	B MIKES	NR PLE	ASANT CITY OF	(LAT 39	54 18N	LONG 081	33 58W)	
AUG 1988									
30	24.96	520	7.3	14.0	0.2	140	0	37	11
39575808134	5700 GU-83	WATER P	PLANT NO	1 BYESVILLE	OH (LAT	39 57 58	BN LONG OF	31 34 57W)	
AUG 1988 30	59.52	625	7.9	12.0	5.2	260	52	72	19
39590608133	1600 GU-85	FLOYD M	AY BYEST	VILLE OH (LAT	39 59 0	6N LONG	081 33 16	SW)	
AUG 1988 30	16.88	640	7.1	14.0	1.6	300	130	68	32
- 19541708133	di sol (mg as	ium, s .s- d .ved so /L (m Na) as	dum, like to lived in a K)	Alka- linity car- cotal, bonat field field f/L as (mg/L CaCO ₃ CaCO ₃	Sulface, disconnections of the solver as (mg.) as Sulface (mg.)	ate ri ed so /L (m	de, di lis- sol olved (m ng/L a cl) Si	s sol .0 ₂) (mg	due
AUG 1988	di sol (mg as	ium, s s- d ved so /L (m Na) as	ilum, lilis- lis- lived in mg/L (ms K) (Alka- linit Inity car- cotal, bonat field field f/L as (mg/L CaCO ₃ CaCO ₃	Sulface, disconnections of the sulface of the sulfa	ate ri co ed sc /L (n 04) as	de, di lis- sol blved (m ng/L a cCl) Si	s- resi ved at 1 lg/L di s sol .0 ₂) (mg	due 80 °C s- ved /L)
AUG 1988 30	di sol (mg as	dium, s.s. d.ved sc./L (m.Na) as	dium, lids- lis- lived in g/L (mg K) (Alka- linit Inity car- cotal, bonat field field f/L as (mg/L CaCO ₃ ASANT CITY OF	Sulfice, disconnections of the control of the contr	ate ri- cad sc /L (n 04) as	de, di iis- sol olved (m sg/L s s(Cl) Si LONG 081	.s- resi ved at 1 g/L di .s sol .0 ₂) (mg .33 01W)	due 80 °C s- ved
AUG 1988 30	di sol (mg as	dium, s.s. d.ved sc./L (m.Na) as	dium, lids- lis- lived in g/L (mg K) (Alka- linit Inity car- cotal, bonat field field f/L as (mg/L CaCO ₃ CaCO ₃	Sulfice, disconnections of the control of the contr	ate ri- cad sc /L (n 04) as	de, di iis- sol olved (m sg/L s s(Cl) Si LONG 081	.s- resi ved at 1 g/L di .s sol .0 ₂) (mg .33 01W)	due 80 °C s- ved /L)
AUG 1988 30	di sol (mg as 0100 GU-84 8	dium, s.s. d.ved sc./L (m.Na) as VILLAGE 4 1 B MIKES	dium, lids- lis- lived in g/L (mg K) (Alka- linit Inity car- cotal, bonat field field f/L as (mg/L CaCO ₃ ASANT CITY OF	Sulfi e, dis as (mg) as Si (LAT 39	ate ri- cad sc /L (n 04) as	de, di iis- sol olved (m sg/L s s(Cl) Si LONG 081	s- resived at 1 log/L dis sol (02) (mg 33 01W)	due 80 °C s- ved /L)
AUG 1988 30 895418081333 AUG 1988 30	di sol (mg as 0100 GU-84 8 5800 GU-86	dium, s.s. d.ved societies of the societ	dum, lidis- tils- tilved in g/L (mg/L) (mg/L	Alka- linit car- cotal, bonat field field field field (LacO3 CaCO3 ASANT CITY OF 416 416 416	y, Sulfie, disserved as (mg) as Si (LAT 39	ate ri c - c - c - c - c - c - c - c - c -	de, di lis- sol lis- sol llved (m g/L s cC1) Si LONG 081 39 7 LONG 081	.s- resi ved at 1 log/L di .s sol .0 ₂) (mg 33 01W) .5 4 33 58W)	due o 80 °C s- ved /L)
AUG 1988 30 895418081333 AUG 1988 30	di sol (mg as 0100 GU-84 8 5800 GU-86 5700 GU-83	dium, s.s. d. ved so ve	dum, lidis- tils- tilved in g/L (mg/L) (mg/L	Alka- linit car- cotal, bonat field field field field (Mg/L as CaCO ₃) ASANT CITY OF 416 416 ASANT CITY OF 241 246	y, Sulfie, disserved as (mg) as Si (LAT 39	ate ri c - c - c - c - c - c - c - c - c -	de, di lis- sol lis- sol llved (m g/L s cC1) Si LONG 081 39 7 LONG 081	.s- resived at 1 log/L dii.s sol. O.2) (mg 33 01W) .5 4 33 58W)	due o 80 °C s- ved /L)
AUG 1988 30 395418081335 AUG 1988 30 395758081345 AUG 1988 30	di sol (mg as sol (mg	dium, s.s. d. ved sc. /L (m. Na) as VILLAGE 4 1 B MIKES 3 2 WATER P	dum, lidis- tils-	Alka- linit car- cotal, bonat field field field field field field acco. ASANT CITY OF	y, Sulfie, dissipation of the control of the contro	ate ri c and s(n/L) (/L (n/L) 54 17N .0 .0 .54 18N .3	de, ditis- solitis- s	s- resived at 1 lag/L dil s sol (02) (mg 33 01W) 33 01W) 33 58W) 2 1 34 57W)	due o 80 °C s- ved /L) 99

Table 18.--Water-quality data for ground-water sites in Upper Wills Creek basin,

<u>August 1988</u>--Continued

Date	Solids, sum of constit- uents, dis- solved (mg/L)	Alu- minum total recov- erable (µg/L as Al)		Iron, total recov- erable (µg/L as Fe)	Iron, dis- solved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (pg/L as Mn)	Carbon, organic dis- solved (mg/L as C)
395417081330100	GU-84 VILL	GE OF	PLEASANT (CITY OH (L	AT 39 54	17N LONG	081 33 0	1W)
AUG 1988 30	484	20	<10	3,800	1,400	70	56	3.0
395418081335800	GU-86 B MIR	ES NR	PLEASANT (CITY OH (L	AT 39 54	18N LONG	081 33 58	BW)
AUG 1988 30	280	30	50	1,300	990	140	140	0.9
395758081345700	GU-83 WATER	PLANT	NO 1 BYES	SVILLE OH	(LAT 39 5	7 58N LON	G 081 34	57W)
AUG 1988 30	352	<10	<10	6,100	5,700	220	230	1.6
395906081331600	GU-85 FLOYE	MAY B	YESVILLE (OH (LAT 39	59 06N I	ONG 081 3	3 16W)	
AUG 1988 30	381	170	<10	350	160	500	510	1.0

Figure 19.—Upper Raccoon Creek basin (R), showing surface-water sites, ground-water sites and stiff diagrams for ground-water sites.

the eastern part of the basin to a less rugged terrain toward the center of the basin (Stout, 1927). Local relief is about 300 ft in the more hilly parts of the area.

Geologic Setting

The stratigraphic units that are present in the area include, from west to east in ascending order, (1) the Logan Formation of Mississippian Age, which crops out in bottomlands along Brushy Fork Creek, (2) basal Pennsylvanian units of the Pottsville and Allegheny Formations, and (3) the Conemaugh Formation, which is present mostly as remnants along ridges in the eastern part of the basin. These units dip to the east and south, averaging about 33 ft/mi to the southeast, according to Stout (1927).

The principal coal-bearing units are the Lower Mercer (No. 3) coal in the Pottsville Formation and the Brookville (No. 4), Clarion (No. 4A), Lower Kittanning (No. 5), Middle Kittanning (No. 6), Lower Freeport (No. 6A), and Upper Freeport (No. 7) coals in the Allegheny Formation (fig. 6). Three areas of active surface mining include the north corner of the basin, an area east and northeast of McArthur, Ohio, and along the drainage boundary that lies between Upper Raccoon Creek and Lower Raccoon Creek basin on the west. Over much of the rest of the basin the coals are thin or discontinuous.

Principal aquifers are in the surficial bedrock. Of regional importance is the Black Hand Sandstone Member of the Cuyahoga Formation, which is tapped by many wells in Vinton County. The southeastern limit of potable water in the Black Hand Sandstone Member is generally along a line about three miles east of McArthur, Zaleski, and Lake Hope (fig. 19) on the basis of a study by Norris and Mayer (1982). Locally, productive sources of water are available in sandstone units of the Pottsville and Allegheny Formations.

Differences between modern and preglacial drainage systems have been explained in detail by Stout (1927). Alluvial deposits are present along various streams, but these are mostly of fine-grained sand or clay. Except for domestic supplies, shallow ground-water sources in these deposits are unlikely to be productive. In general, most shallow wells are completed in bedrock, except where the alluvial deposits are sufficiently developed for the construction of large-diameter dug wells (Pree, 1962b). One well, V-91, sampled in this investigation was a dug well. The other three sampled wells were completed in bedrock.

⁵ Unit follows usage of Ohio Geological Survey.

Water Quality

The Raccoon Creek basin (R and S combined, fig. 1) was studied previously by the U.S. Geological Survey (Wilson, 1985 and 1988), in cooperation with the Ohio Department of Natural Resources, Division of Reclamation. In the earlier study (1985), a data base was developed for use in individual subbasin reclamation projects, and, in November 1983, a synoptic sampling of 41 surface-water sites during base-flow conditions was carried Twenty-six of those sites were in the Upper Raccoon Creek basin (R, fig. 1). In a second study (1988), chemical and biological data were collected from July 1984 through September 1986 at some of these sites in support of reclamation projects in selected subbasins. Because ample surface-water data are available in the Raccoon Creek basin, no short-term surface-water sites were selected in the current study. Ground water was not included in the earlier studies, therefore, an evaluation of ground-water quality in the area was made for this study, and four wells were selected for sampling.

Surface water

Compilation of baseline surface-water-quality data for the Upper Raccoon Creek basin similar to objectives for other selected basins in this study was accomplished with the synoptic sampling in November 1983 (Wilson, 1985). Results of a recent study (Wilson, 1988, p. 27) indicated that major sources of mine drainage to Raccoon Creek include East Branch of Raccoon Creek, Brushy Creek, and Hewett Fork (fig. 19). Long-term sites R-1 and R-2 were used in the earlier studies. R-1 was established to document water quality downstream from the acidic sources (Wilson, 1988). Water-quality samples for Elk Fork, the longest tributary in the Upper Raccoon Creek basin, were collected near its mouth at site R-2. According to Wilson (1988), Elk Fork has not been significantly affected by mine drainage.

Table 19, summarizing data over two periods of investigation, is based on data collected by Wilson, 1988; Jones, 1988; and the current study. The 1984-86 data is based on eight samples at site R-1 and seven at R-2. The 1986-88 median values were derived from five measurements at site R-1 and four at R-2. The data are based on Jones (1988) measurements in October 1986 and those of this study. Site R-2 was dry in the fall of 1987 and not sampled.

Table 19.--Medians for selected water-quality characteristics for long-term sites R-1 and R-2 in Upper Raccoon Creek basin, 1984-86 and 1986-88

[mg/L, milligrams per liter; ug/L, micrograms per liter; uS/cm, microsiemens per centimeter at 25 degrees Celsius]

	Site	R-1	Si	te R-2
Constituent and unit of measure	1984-86	1986-88 ²	1984-861	1986-882
Specific conductance,				
uS/cm	560	510	370	450
pH	7.0	6.9	7.1	7.2
Alkalinity, mg/L as				
CaCO ₃	19	33	38	46
Sulfate, mg/L as SO,	135	180	100	125
Aluminum, total,				
ug/L as Al	200	90	100	180
Aluminum, dissolved,				
ug/L as Al	100	20	100	25
Iron, total, ug/L				
as Fe	670	780	1,000	840
Iron, dissolved,				
ug/L as Fe	110	120	220	255
Manganese, total,				
ug/L as Mn	1,100	810	730	715
Manganese, dissolved,				
ug/L as Mn	1,050	820	760	710

July 1984 through September 1986 data from Wilson, 1988.
October 1986 through October 1988 data from Jones, 1988, and current study.

Ground water

Locations of the four wells sampled and Stiff diagrams depicting the ionic character of the water samples are shown in figure 19. Analyses of ground-water samples for this basin are given in table 20.

The waters from wells HK-52 and 53, located in the northern part of the basin, were a sodium bicarbonate type. The waters at wells V-90 and V-91, near Radcliff, at pH 5.8, were slightly acidic. Cation proportions between calcium, magnesium, and sodium were fairly even, but sulfate was the dominant anion.

Table 20.--Water-quality data for ground-water sites in Upper Raccoon Creek basin,

<u>August 1988</u>

[°C, degrees Celsius; mg/L, milligrams per liter; µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius; --, data not available]

Date	Depth to water below land- surface datum (feet)	Spe- cific con- duc- tance (µS/cm)	рН	Temper- ature (°C)	Oxygen, dis- solved (mg/L)	(mg/L	Hard- ness, noncar- bonate mg/L as CaCO ₃)	Acidity (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)
39081008222	1900 V-90	S CORRELL	AT RADCI	LIFF OH (L	AT 39 08	10N LONG	082 22 19W)	
AUG 1988 29	28.40	120	5.8	16.0	5.1	30	22	20	6.4
39100208221	1100 V-91	R BARNES I	NR RADCL	IFF OH (LA	T 39 10 0	2N LONG O	82 21 11W)		
AUG 1988 29	21.04	560	5.8	15.0	0	150	130	24	28
39234708220	5300 HK-53	JW HENDE	RSON NR S	STARR OH (LAT 39 23	47N LONG	082 20 53	W)	
AUG 1988 23	23.95	835	8.8	14.5	0	13	0	-	3.4
392500082195	5100 HK-52	TRI CO CO	OON HUNTI	TRS ASSOC	NR STARR	OH (LAT 3	9 25 00N L	ONG 082 1	9 51W)
AUG 1988 23	10.84	610	7.3	15.5	0	180	0		50
•	Magne sium dis- solve (mg/I as Mg	dis- dis- d solved (mg/L	Potas sium dis- solve (mg/I as K)	total dield (mg/L a	car- bonate field (mg/L as	Sulfate, dis- solved	dis- solved (mg/L	Silica, dis- solved (mg/L as SiO ₂)	Solids, residue at 180° dis- solved (mg/L)
- 39081008 222 1	1900 V-90	S CORRELL	AT RADCI	IFF OH (L	AT 39 08	10N LONG	082 22 19W)	
AUG 1988 29	3.5	7.4	0.80	8 (8.0	36	3.0	38	107
391002082211	1100 V-91	R BARNES N	R RADCLI	FF OH (LA	39 10 0	2N LONG O	32 21 11W)		
AUG 1988 29	19	43	5.9	23	27	180	22	17	351
392347082205	300 HK-53	JW HENDER	SON NR S	TARR OH (AT 39 23	47N LONG	082 20 531	I)	
AUG 1988 23	1.1	180	2.1	287	288	1.1	71	7.1	472
392500082195	100 HK-52	TRI CO CO	ON HUNTE	RS ASSOC 1	VR STARR (DH (LAT 39	25 00N L	ONG 082 1	9 51W)

Table 20.--Water-quality data for ground-water sites in Upper Raccoon Creek basin,
August 1988--Continued

Date	Solids, sum of constit- uents, dis- solved (mg/L)	minum	Alu- minum, dis- solved (µg/L as Al)	recov-	Iron, dis- solved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	Carbon organic dis- solved (mg/L as C)	
390810082221900	V-90 S CO	RRELL AT	RADCLIFF	OH (LAT 3	9 08 10N I	LONG 082	22 19W)		
AUG 1988 29	100	310	20	330	86	50	73	1.3	
391002082211100	V-91 R BA	RNES NR I	RADCLIFF	OH (LAT 39	10 02N L	ONG 082 2	1 11W)		
AUG 1988 29	329	130	10	630	76	90	74	1.2	
392347082205300	HK-53 JW	HENDERSO	NR STAR	R OH (LAT	39 23 47N	LONG 082	20 53W)		
AUG 1988 23	438	200	<10	210	<3	10	3	1.0	
392500082195100	HK-52 TRI	CO COON	HUNTERS	ASSOC NR S	TARR OH (I	LAT 39 25	OON LONG	082 19 5	51W)
AUG 1988 23	374	30	<10	1,500	1,400	120	120	0.7	

As a group, the waters from the four wells were low in dissolved-solids content, with well V-90 having the lowest level of dissolved solids for all ground-water samples analyzed during this study.

With respect to OEPA standards for public supply, only water from well HK-52 was excessive in dissolved iron, and wells HK-52, V-90, and V-91 in manganese.

SUMMARY

Twenty-one drainage basins have been selected for study in the area of eastern Ohio where surface mining of coal is active. Most of the area lies in the unglaciated part of Ohio. The region is underlain by Mississippian-, Pennsylvanian-, and Permian-age strata that dip gently eastward toward the Appalachian Basin. The strata consist of sandstone and shale interbedded with coal, clay, and limestone.

Along the western and northern margins of the study area, a covering of glacial drift has left a smoother land surface, which, in its original state, probably resembled the rugged upland that characterizes most of the region. In places, the steep-sided narrow valleys broaden into wide valleys cut by the larger streams.

In the northern part of the study area, local accumulations of permeable sands and gravels, as well as alluvial deposits of these materials, were laid down as outwash deposits in major drainage channels when the ice melted. Shallow, productive sources of ground water where these materials exist are important to the region but are largely limited to northern areas and major drainage systems. Bedrock sources of ground water are widely available, but, in many areas, yields are sufficient for domestic use only.

This report presents and discusses data from the second phase of a study begun in 1985. The data were collected from July 1987 through October 1988. Discharge measurements and water-sample collections were made at 41 long-term surface-water sites from which 162 water-quality samples were collected for analysis. Of these, the following ranges in field measurements or concentrations were noted: specific conductance, 290 to 2,700 µS/cm; pH, 2.8 to 8.6; dissolved sulfate, 23 to 1,500 mg/L; dissolved iron, 10 to 51,000 µg/L; dissolved manganese, 10 to 47,000 µg/L; and dissolved aluminum, 10 to 17,000 µg/L. The highest concentrations of iron, manganese, and aluminum were at sites where the water also was acidic. The highest specific conductance and sulfate concentration were each at sites where waters were alkaline.

In six drainage basins chosen for intensive study, several surface-water sites were selected for once-only measurements and collection of water-quality samples. A total of 40 short-term surface-water sites and 24 ground-water sites were sampled from basins selected to be intensively studied.

In 1987, the Sandy Creek, Sugar Creek and Middle Tuscarawas River, and Lower Tuscarawas River basins were chosen for intensive study. Discharge was measured and water was sampled at a total of 30 short-term surface-water sites. Waters from four wells were sampled in each basin. The three basins are generally in the northern part of the study area and collectively are drained by the Tuscarawas and Muskingum River system. yses of water samples did not indicate large areas of severely degraded surface water or ground water. Most of the streams had a pH of 7.0 or greater; none were below a pH of 6.6. Iron, manganese, and aluminum concentrations were higher at sites close to active mining areas. Ground water was mostly calcium bicarbonate Water at a few wells was a calcium sulfate or calcium bicarbonate sulfate type. Concentrations of most constituents were within OEPA standards for public-water supply.

In 1988, Short and Wheeling Creeks, Upper Wills Creek, and Upper Raccoon Creek basins were chosen for intensive study. A total of 10 short-term surface-water sites were chosen in Short Creek, Wheeling Creek, and Upper Wills Creek basins. Because the entire Raccoon Creek basin was part of a recent study, no shortterm surface-water sites were measured or sampled. In both the Short and Wheeling Creeks and Upper Wills Creek basins several analyses that showed elevated concentrations of sulfate, iron, manganese, and aluminum were not far from active areas of mining. Only one water sample was strongly acidic. The pH values in most places suggest that various stream systems are benefiting from a buffering action probably caused by the presence of carbonate rocks in both basins. In the Upper Raccoon Creek basin, elevated concentrations of constituents, indicative of acid drainage near coal-mining areas, as revealed in earlier studies, were greatly reduced downstream.

Unlike the three basins investigated in 1987, shallow productive aquifers generally are not present in the basins investigated in 1988 (Short and Wheeling Creeks, Upper Wills Creek, and Upper Raccoon Creek), with the possible exception of certain areas along Wills Creek in Upper Wills Creek basin. In some places, small supplies of ground water are available in bedrock units near the land surface. Along some streams, small supplies of ground water are available in shallow bedrock units that are recharged through a thin covering of alluvium. Such ground water is susceptible to degradation by contaminated surface waters.

Results of the 1988 ground-water analyses show that waters from wells in Short and Wheeling Creeks basin were the most mineralized of all the basins studied. Within the three basins sampled, the waters at about half of the wells were a sodium bicarbonate type, and the other types were various combinations of sodium and calcium with bicarbonate and sulfate. OEPA standards were exceeded for iron and manganese concentrations at some wells in Upper Raccoon Creek and Upper Wills Creek basins. In Short and Wheeling Creeks basin, OEPA standards were exceeded for sulfate at two wells and for dissolved solids at three wells.

REFERENCES CITED

- American Public Health Association, 1975, Standard methods for the examination of water and wastewater (14th ed.): Washington, D.C., American Public Health Association, 1,193 p.
- Brant, R.A., and Delong, R.M., 1960, Coal resources of Ohio: Ohio Division of Geological Survey Bulletin 58, 245 p.
- Brant, R.A., and Moulton, E.Q., 1960, Acid mine drainage manual: Ohio State University Engineering Experiment Station Bulletin 179, 40 p.
- Collins, H.R., 1978, Seam analysis and description of United States coal fields, Ohio, in Neilson, G.F., ed., Keystone Coal Industry Manual: New York, McGraw-Hill, 20 p.
- ---- 1979, The Mississippian and Pennsylvanian (Carboniferous) systems in the United States--Ohio: U.S. Geological Survey Professional Paper 1110-E, p. 1-26.
- Fenneman, N.M., 1938, Physiography of eastern United States: New York, McGraw-Hill, 691 p.
- Happ, Stafford, 1934, Drainage history of southeastern Ohio and adjacent West Virginia: Journal of Geology, v. 42, no. 3, April-May, 1934, 20 p.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water: U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Hren, J., Wilson, K.S., and Helsel, D.R., 1984, A statistical approach to evaluate the relation of coal mining, land reclamation, and surface-water quality in Ohio: U.S. Geological Survey Water-Resources Investigations Report 84-4117, 325 p.

- Jones, A.L., 1988, Geologic setting and water quality of selected basins in the active coal-mining areas of Ohio, June 1985 through December 1986: U.S. Geological Survey Water-Resources Investigations Report 88-4084, 85 p.
- Lamborn, R.E., 1951, Limestones of eastern Ohio: Ohio Geological Survey Bulletin 49, 377 p.
- Multer, H.G., 1967, Bedrock geology of Wayne County: Ohio Department of Natural Resources, Division of Geological Survey, Report of Investigations 61, 1 pl., scale 1:62500.
- Norris, S.E., and Mayer, G.C., 1982, Water resources of the Black Hand Sandstone member of the Cuyahoga Formation and associated aquifers of Mississippian Age in southeastern Ohio: U.S. Geological Survey Open-File Report 82-170, 72 p.
- Ohio Department of Natural Resources, Ohio Capability Analysis Program 1987: Land Use, Southeast Ohio, 1 pl., scale 1:50000.
- Ohio Department of Natural Resources, Division of Water, 1962, Hydrologic atlas of average annual precipitation, temperature, streamflow, and water loss in Ohio: Ohio Water Plan Inventory Report 13, 4 p. and 4 maps.
- Ohio Environmental Protection Agency, 1978, Water quality standards: chapter 3745.1 of the Ohio Administrative Code, 117 p.
- Pfaff, C.L., Helsel, D.R., Johnson, D.P., and Angelo, C.G., 1981, Assessment of water quality in streams draining coalproducing areas in Ohio: U.S. Geological Survey Water-Resources Investigations Open-File Report 81-409, 98 p.
- Pree, H.L., 1962a, Sandy Creek Basin underground water resources: Ohio Department of Natural Resources, Division of Water, 1 pl., scale 1:125000.
- ---- 1962b, Upper Raccoon Creek Basin underground water resources: Ohio Department of Natural Resources, Division of Water, 1 pl., scale 1:125000.
- Rantz, S.E., and others, 1982, Measurement and computation of streamflow: Volume 1, Measurement of stage and discharge: U.S. Geological Survey Water-Supply Paper 2175, 284 p.
- Razem, A.C., and Sedam, A.C., 1985, Ground-water quality and geochemistry of aquifers associated with coal in the Allegheny and Monongahela Formations, southeastern Ohio: U.S. Geological Survey Water-Resources Investigations Report 85-4034, 39 p.

- Schmidt, James J., 1959, Short Creek and Wheeling Creek basins underground water resources: Ohio Department of Natural Resources, Division of Water, 1 pl., scale 1:125000.
- ---- 1962, Middle Tuscarawas River and Sugar Creek basins underground water resources: Ohio Department of Natural Resources, Division of Water, 1 pl., scale 1:125000.
- Skougstad, M.W., Fishman, M.J., Friedman, L.C., Erdman, D.E., and Duncan, S.S., 1979, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. Al, 626 p.
- Stout, Wilber, 1927, Geology of Vinton County, Ohio: Ohio Geological Survey Bulletin 31, 402 p.
- Stout, Wilber, Ver Steeg, Karl, and Lamb, G.F., 1943, Geology of water in Ohio: Ohio Geological Survey Bulletin 44, 694 p.
- U.S. Environmental Protection Agency, 1986, Quality criteria for water, 1986: Office of Water, EPA 440/5-86-001 (looseleaf).
- U.S. Geological Survey, Office of Water Data Coordination, 1977, Sediment, in National handbook of recommended methods for water data acquisition, chap. 3, 100 p.
- Walker, A.C., 1962a, A part of the lower portion of the Tuscarawas River basin underground water resources: Ohio Department of Natural Resources, Division of Water, 1 pl., scale 1:125000.
- ---- 1962b, Upper Wills Creek basin underground water resources: Ohio Department of Natural Resources, Division of Water, 1 pl., scale 1:125000.
- Wilson, K.S., 1985, Surface-water quality of coal-mine lands in Raccoon Creek basin, Ohio: U.S. Geological Survey Water-Resources Investigations Report 85-4060, 61 p.
- ---- 1988, Chemical quality, benthic organisms, and sedimentation in streams draining coal-mined lands in Raccoon Creek basin, Ohio, July 1984 through September 1986: U.S. Geological Survey Water-Resources Investigations Report 88-4022, 80 p.

Table 21.--Water-quality data for long-term surface-water sites, 1987-88 [°C, degrees Celsius; ft³/s, cubic feet per second; mg/L, milligrams per liter; µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius; --, data not available]

		Instan- taneous dis- charge	Spe- cific con- duc- tance		Temper-	Acidity (mg/L	Alka- linity, field (mg/L as	Sul- fate, dis- solved (mg/L as
Date		(ft ³ /s)	(µS/cm)	pН	(°C)	CaCO ₃)	CaCO ₃)	so ₄)
03109100	A-2	M F L BEA	VER C NR	ROGERS O	H (LAT 40	43 22N LO	NG 080 38	03W)
JUL 1987 21		29	730	8.3	25.5		139	160
27. JUNE 198	0	27	840	8.2	8.0		159	160
07	0	22	765	8.2	25.0		153	160
OCT 05		15	896	8.3	10.0		166	160
3109500	A-1	L BEAVER	C NR EAST	LIVERPO	OL OH (LAT	40 40 331	N LONG 08	0 32 27W)
JUL 1987 0CT		78	770	8.3	27.0		121	190
28		114	760	8.2	5.5		137	180
JUN 1988		97	770	8.2	23.5		133	200
OCT 05		38	896	8.4	12.0		147	200
3110000	B-1	YELLOW C	NR HAMMON	DSVILLE	OH (LAT 40	32 16N LO	ONG 080 4	3 31W)
JUL 1987 OCT		17	570	8.4	29.5		83	130
28. JUN 1988		20	590	8.1	6.0		96	170
07		12	585	7.9	21.5		88	170
OCT 05		30	520	8.2	12.0		109	140
3111500	C-2	SHORT C N	R DILLONV	ALE OH (LAT 40 11	36N LONG (080 44 041	W)
JUL 1987 OCT		27	2,350	8.0	22.5		167	1,100
28 JUN 1988		34	2,300	8.3	7.5		207	1,100
08		27	2,200	8.2	19.0		186	1,100
OCT 05		23	2,700	8.6	10.5		212	1,500
3111548	C-1	WHEELING	C BL BLAI	NE OH (L	AT 40 04 0	IN LONG OF	30 48 31W)
JUL 1987 20		28	2,400	8.2	28.0		173	1,100
27 JUN 1988		23	2,650	8.1	7.0		243	1,300
06 OCT		28	2,270	8.1	25.5		211	1,200
06		12	2,700	8.3	8.5		263	1,400
3113550		MCMAHON C	AT BELLA	IRE OH (1	LAT 40 00	39N LONG O	80 45 45	d)
JUL 1987 20		7.2	1,350	8.2	27.0		146	480
26 JUN 1988		6.5	1,450	8.2	9.5		176	470
06 OCT		10	1,100	8.1	23.0		157	380
04		3.5	1,300	8.1	16.0		154	570
3114000	D-1	CAPTINA C	AT ARMST	RONGS MII	LLS OH (LA	T 39 54 31	N LONG OF	30 55 27W)
JUL 1987		5.7	510	8.4	27.5		151	77
OCT 26 JUN 1988		9.2	715	8.3	10.5		176	150
06		12	530	8.4	25.0		149	100
OCT 04		4.0	880	8.5	20.0		142	270

Table 21.--Water-quality data for long-term surface-water sites, 1987-88--Continued

Date		Alu-minum, total recoverable (µg/L as Al)	Alu- minum, dis- solved (µg/L as Al)	Iron, total recov- erable (µg/L as Fe)	Iron, dis- solved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (ug/L as Mn)
03109100 A	1-2	M F L BEAVER C	NR ROGERS	OH (LAT	40 43 22N	LONG 080	38 03W)
JUL 1987		280	40	210	<10	80	40
OCT 27		60	<10	270	70	40	50
JUN 1988 07		150	20	450	40	300	200
OCT 05		220	20	500	40	100	40
03109500 A	1-1	L BEAVER C NR E	AST LIVER	POOL OH (LAT 40 40	33N LONG	080 32 27
JUL 1987							
ocT 21		190	40	260	30	60	30
JUN 1988		40	<10	130	30	30	20
OCT OT		110	20	230	80	100	40
05		100	<10	170	30	50	20
	3-1	YELLOW C NR HAM	MONDSVILL	E OH (LAT	40 32 168	LONG 080	0 43 31W)
JUL 1987		220	60	210	20	30	20
OCT 28 JUN 1988		130	40	490	60	30	20
07		140	50	220	10	60	30
OCT 05		100	10	160	20	40	10
03111500 C	-2	SHORT C NR DILL	ONVALE OH	(LAT 40	11 36N LON	IG 080 44	04W)
JUL 1987		420	190	470	30	50	40
OCT		300	120	550	70	90	80
JUN 1988 08		1,100	130	2,900	10	150	70
OCT 05		200	100	340	20	30	30
03111548 C	-1	WHEELING C BL B	LAINE OH	(J.AT 40 0	4 OIN LONG	080 48 3	31W)
JUL 1987					7 0211 20110	000 10 0	,
20		870	480	1,300	20	70	70
JUN 1988		330	50	770	30	130	140
06		880	410	1,600	50	110	60
06		390	80	870	30	120	120
3113550 D	-2	MCMAHON C AT BE	LLAIRE OH	(LAT 40	00 39N LON	G 080 45	45W)
JUL 1987 OCT		440	140	460	<10	40	40
26		120	50	360	30	30	20
JUN 1988 06		220	110	320	<10	50	40
OCT 04		140	90	330	40	20	20
3114000 D	-1	CAPTINA C AT ARI	MSTRONGS N	TILLS OH	(LAT 39 54	31N LONG	080 55 27
JUL 1987							
20 OCT		370	40	470	<10	50	20
JUN 1988		90	<10	120	20	10	<10
06		150	<10	250	<10	40	10

Table 21.--Water-quality data for long-term surface-water sites, 1987-88-Continued

		Instan- taneous dis- charge	Spe- cific con- duc- tance		Temper-	Acidity (mg/L as	Alka- linity, field (mg/L as	Sul- fate, dis- solved (mg/L as	
Date		(ft ³ /s)	(µS/cm)	PH	(°C)	CaCO3)	CaCO ₃)	so ₄)	
03114250	D-3	SUNFISH C	AT CAMERO	ON OH (L	AT 39 46 0	ON LONG O	30 56 09W)	
JUL 1987		3.7	405	8.4	29.0		132	40	
OCT 20									
JUN 1988		3.1	455	8.2	11.0		146	55	
OCT OCT		4.8	400	8.3	21.0		131	58	
04		2.7	465	8.2	15.5		141	54	
3116950	G-2	NEWMAN C	NR MASSILI	ON OH (LAT 40 49	22N LONG	081 33 06	W)	
JUL 1987		3.8	740	8.3	28.5		202	240	
OCT 27		3.0	850	7.4	10.0		251	120	
JUN 1988 07		3.3	920	7.8	22.0	24	227	110	
OCT 05		2.9	840	8.2	12.0		240	120	
03		2.9	840	0.2	12.0		240	120	
3117500	E-1	SANDY C A	T WAYNESBU	RG OH (LAT 40 40	21N LONG	081 15 36	(F)	
JUL 1987		71	640	8.3	24.0		129	240	
OCT 26		80	530	8.1	10.0		102	110	
JUN 1988		54	645	7.7	19.0		139	120	
OCT 05		69	460	7.6	13.0		88	77	
JUL 1987 22		29	600	8.0	25.0		173	140	34 .
JUN 1988		24	680	6.9	9.0		200	72	
07		17	780	7.7	23.5		202	61	
05		16	692	8.1	12.5		214	62	
3127500	H-1	STILLWATE	R C AT UH	RICHSVIL	LE OH (LAT	40 23 101	LONG 08	1 20 50W)	
JUL 1987		69	865	8.0	25.5		123	300	
OCT 27		41	920	7.7	8.5		192	320	
JUN 1988		44	1,030	7.9	21.5		120	340	
OCT 04		23	1,020		17.5		136	370	
3129100	I-2	WHITE EYE	S C NR FRE	SNO OH	(LAT 40 18	17N LONG	081 45 0	LW)	
JUL 1987		7.4	400	7.0	26.0		00	120	
OCT 26				7.8	26.0		98	120	
JUN 1988		5.0	460	7.4	9.0		92	79	
OCT OCT		5.0	440	7.5	21.0		91	73	
04		1.6	446	7.5	13.5		98	76	
3140000	J-1	MILL C NR	COSHOCTON	OH (LA	T 40 21 46	N LONG 081	51 45W)		
JUL 1987		6.3	350	7.9	26.0		91	87	
OCT 26		2.6	405	7.7	6.5		103	58	
JUN 1988 08		1.4	390	7.5	18.5		106	50	
OCT									
04		0.83	419	7.6	11.5		120	52	

Table 21.--Water-quality data for long-term surface-water sites, 1987-88--Continued

Date		Alu- minum, total recov- erable (ug/L as Al)	Alu- minum, dis- solved (µg/L as Al)	Iron, total recov- erable (ug/L as Fe)	Iron, dis- solved (µg/L as Fe)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	
03114250	D-3	SUNFISH C AT CA	MERON OH	(LAT 39 4	6 OON LON	G 080 56	09W)	
JUL 1987		240	30	310	<10	50	20	
		50	<10	70	20	20	<10	
26 JUN 1988 06		90	<10	190	10	40	10	
OCT 04		110	20	200	10	20	<10	
03116950	G-2	NEWMAN C NR MAS	SILLON OH	(LAT 40	49 22N LO	NG 081 33	06W)	
JUL 1987		140	-10	400		010	140	
OCT 22		140	<10	490	60	210	140	
JUN 1988		110	<10	660	180	160	130	
OCT		150	<10	520	60	310	270	
05		130	90	480	100	90	70	
03117500	E-1	SANDY C AT WAYN	ESBURG OH	(LAT 40	40 21N LO	NG 081 15	36W)	
JUL 1987		110	20	410	60	270	230	
OCT 26		80	20	430	90	280	240	
JUN 1988		90	<10	470	50	410	380	
OCT 05		50	20	200	30	130	120	
03123000	G-1	SUGAR C AB BEAC	H CITY DA	M AT BEAC	H CITY OH	(LAT 40 :	39 24N LONG	G 081 34 37W
JUL 1987		1 500		0. 100	20	070	150	
OCT		1,500	20	2,400	30	270	150	
27. JUN 1988		210	<10	700	170	110	90	
07		560	<10	1,300	40	760	750	
05		520	20	930	40	130	110	
03127500	H-1	STILLWATER C AT	UHRICHSV	ILLE OH (LAT 40 23	10N LONG	081 20 500	1)
JUL 1987		440	50	700	30	570	450	
OCT 27		150	20	640	190	400	390	
JUN 1988 06		260	20	450	20	800	700	
OCT 04		210	30	380	30	510	540	
03129100	I-2	WHITE EYES C NR	FRESNO O	H (LAT 40	18 17N LO	ONG 081 4	5 01W)	
JUL 1987		200	50	1,300	40	280	250	
OCT								
JUN 1988		180	20	2,400	720	430	420	
OCT OCT		200	10	2,300	100	580	560	
04		190	<10	2,000	340	500	530	
	J-1	MILL C NR COSHO	CTON OH (LAT 40 21	46N LONG	081 51 45	5W)	
JUL 1987 20		120	<10	940	60	160	130	
OCT 26		40	10	1,200	320	150	150	
JUN 1988		210	10	1,300	140	390	360	
08								

Table 21.--Water-quality data for long-term surface-water sites, 1987-88--Continued

		Instan- taneous dis- charge	Spe- cific con- duc- tance		Temper-	Acidity (mg/L as	Alka- linity, field (mg/L as	Sul- fate, dis- solved (mg/L as
Date		(ft ³ /s)	(µS/cm)	pН	(°C)	CaCO3)	CaCO3)	SO ₄)
03148400	0-2	MOXAHALA	C AT ROBER	RTS OH (LAT 39 51	17N LONG	082 03 23	W)
JUL 1987		15	1,950	3.2	25.5	206	0	450
20 OCT 28		11	2,450	3.3	7.5	216	0	1,200
JUN 1988		18	1,900	3.3	20.5	133	0	880
OCT 04		9.9	2,000	3.1	14.0	203		160
3149500	N-1	SALT C NR	CHANDLERS	VILLE O	H (LAT 39	54 31N LOR	NG 081 51	38W)
JUL 1987	-, -							
21 OCT		5.1	505	8.0	24.5		115	590
JUN 1988		3.8	625	7.8	9.5		139	100
07		4.9	515	8.0	25.0		115	83
04		0.82	660	7.6	17.0		119	110
3150250	N-2	MEIGS C N	R BEVERLY	OH (LAT	39 36 00N	LONG 081	42 42W)	
JUL 1987		9.1	1,250	8.1	25.5		131	550
OCT 27		1.9	2,100	7.8	9.5		144	990
06		18	1,300	8.1	21.5		172	570
OCT 05		0.99	2,250	7.9	12.0		128	1,100
3156700	P-1	RUSH C NR	SUGAR GRO	VE OH (LAT 39 38	18N LONG	82 30 42	1)
JUL 1987								
23		22	745	7.8	28.5		93	210
26 JUN 1988		12	970	7.5	4.5		91	310
06		28	680	7.7	19.5		88	180
04		8.7	918	7.9	14.0	-22	69	330
3157000	P-2	CLEAR C N	R ROCKBRID	GE OH (LAT 39 35	18N LONG C	82 34 431	1)
JUL 1987		17	370	8.3	26.0		157	640
OCT 26 JUN 1988		13	390	8.3	7.0		158	27
06		18	425	8.1	17.0		165	41
OCT 04		13	379	8.6	14.5		164	29
3158200	Q-1	MONDAY C	AT DOANVIL	LE OH (1	LAT 39 26	O7N LONG O	82 11 30V	1)
JUL 1987		7.1	1,050	3.6	27.0	73	0	970
OCT		2.9	1,500	3.6	8.0	111	0	730
JUN 1988 06		18	1,100	3.6	17.0	64	0	450
OCT 04		3.5	1,250	3.4	15.0	29		600
	m •							
3160050 (JUL 1987	₹ √ -1	LEADING C	NK TITULE	TORT UH	(TWI 22 0	O SIM LONG	062 03 (, w ,
OCT 21		0.61	1,200	7.8	23.5		118	280
27 JUN 1988		0.18	1,400	6.9	10.5		104	310
08		1.7	700	7.8	18.5		101	150
OCT 05		0.07	890	7.7	14.0		113	110

Table 21.--Water-quality data for long-term surface-water sites, 1987-88--Continued

		Alu-				Manga-		-
		minum, total recov- erable	Alu- minum, dis- solved	Iron, total recov- erable	Iron, dis- solved	nese, total recov- erable	Manga- nese, dis- solved	
Date		(µg/L as Al)	(µg/L as Al)	(µg/L as Fe)	(ug/L as Fe)	(ug/L as Mn)	(ug/L as Mn)	
03148400	0-2	MOXAHALA C AT R	OBERTS OH	(LAT 39	51 17N LO	NG 082 03	23W)	-
JUL 1987		7,900	8,200	1,100	820	3,300	3,100	
OCT		14,000	12,000	13,000	12,000	19,000	18,000	
JUN 1988 07	3	9,900	1,000	5,100	4,700	50,000	47,000	
OCT 04		460	10	1,300	60	730	580	
03149500	N-1	SALT C NR CHAND	LERSVILLE	OH (LAT	39 54 31N	LONG 081	51 38W)	
JUL 1987		4,700	60	310	40	7,100	6,800	
OCT		130	<10	810	50	290	280	
JUN 1988	3	190	20	650	50	240	230	
OCT		510	130		120	460	470	
04				1,400				
03150250	N-2	MEIGS C NR BEVE	RLY OH (L	AT 39 36	OON LONG	081 42 42	W)	
JUL 1987		590	10	790	30	100	30	
OCT 27 JUN 1988		90	<10	170	20	70	70	
06		250	10	350	20	100	40	
OCT 05		80	30	110	40	60	50	
03156700	P-1	RUSH C NR SUGAR	GROVE OH	(LAT 39	38 18N LO	NG 082 30	42W)	
JUL 1987		610	50	1,400	60	670	570	
OCT 26		110	<10	500	60	4,600	4,600	
JUN 1988		280	20	620	20	400	340	
OCT 04		340	20	990	<10	1,700	1,600	
03157000	P-2	CLEAR C NR ROCK	BRIDGE OH	(LAT 39	35 18N LO	NG 082 34	43W)	
JUL 1987		490	470	41,000	36,000	3,300	3,100	
OCT 26		<10	<10	220	10	30	50	
JUN 1988		100	<10	290	30	40	20	
OCT 04		320	150	850	50	90	30	
	0.1				.5.4		Service of the servic	
03158200 JUL 1987		MONDAY C AT DOA	NATITE OH	(LAT 39	26 O/N LOI	G 082 11	30W)	
OCT 22		17,000	17,000	8,700	8,600	10,000	12,000	
JUN 1988		13,000	13,000	4,200	3,400	4,700	4,800	
06 OCT		7,600	7,800	1,400	1,300	3,200	3,200	
04		11,000	12,000	2,000	2,200	4,200	4,200	
03160050	QQ-1	LEADING C NR MI	DDLEPORT C	OH (LAT 3	9 00 31N I	ONG 082 0)5 07W)	
JUL 1987 OCT		360	30	370	30	810	670	
		20	<10	70	30	1,300	1,200	
JUN 1988 08		90	20	170	50	270	270	
OCT 05		190	20	340	110	1,800	1,600	
		2,0	20	5.10	-14	-1000	_,000	

Table 21.--Water-quality data for long-term surface-water sites, 1987-88-Continued

		Insta taneo dis char	us	Spe- cific con- duc- tance		Temper-	Acidity (mg/L	Alka- linity, field (mg/L as	Sul- fate, dis- solved (mg/L as
Date		(ft ³ /	s) (µS/cm)	pН	(°C)	CaCO3)	CaCO3)	so ₄)
03160105	S-2	CAMPAI	GN C	NR GALI	IPOLIS O	H (LAT 38	53 51N LON	IG 082 11	31W)
JUL 1987 20		0.0	4	700	7.7	29.0		78	160
27 JUN 1988		0.0	1	1,000	7.0	11.0		93	91
07		0.1	8	570	7.7	29.5		75	150
OCT 05		0.0							
3201988	S-1	L RACC	OON C	NR VIN	TON OH (LAT 38 57	11N LONG C	82 21 56	W)
JUL 1987		8.8		730	4.4	24.5	28	0	320
OCT 27		1.5		835	6.4	9.0	0	31	310
JUN 1988 06		6.9		580	6.4	20.5	5.0	5	250
OCT 06		0.7	0	701	7.1	10.5		98	270
8271508224	2400	T-2	INDIA	LN GUYAN	C NR BR	ADRICK OH	(LAT 38 27	15N LONG	G 082 24 241
JUL 1987		2.6		550	7.8	24.0		86	170
OCT		0.2	2	710	7.2	7.0		104	220
JUN 1988		2.1	-	450	7.6	20.5		88	120
07 OCT									
06		0.4	1	540	7.6	13.0		132	130
8300508228	0600	T-1	SYMME	S C NR	GETAWAY (OH (LAT 38	30 05N LO	NG 082 2	B 06W)
JUL 1987 20		14		400	7.6	23.0		132	65
28 JUN 1988		0.5	5	450	7.2	7.5		71	26
07		7.7		348	7.2	21.0		59	62
O6		0.4	6	290	7.4	12.5		123	30
8582608220	1800	R-1	RACCO	ON C AT	VINTON (OH (LAT 38	58 26N LO	NG 082 20	0 18W)
JUL 1987		11		510	6.9	25.0		17	190
OCT 27		0.7	9	570	6.8	10.0		51	180
JUN 1988		21	Χ.	485	6.6	22.5		9	180
OCT 06		0.5	В	1,300	7.3	11.5		85	560
	2200	R-2	elk f	(11-5)	NR RADCI	LIFF OH (L	AT 39 09 4	IN LONG	082 21 22W)
JUL 1987		0.9		400	7.2	24.0		43	120
OCT		0.0							
27 JUN 1988		1.3		330	7.0	17.5		34	96
06								2.5	
OCT OCT		0.0	_	625	7.1	12.0		51	190
06					01 40 01	HAUNCEY OH	(LAT 39 2	3 42N LO	TG 082 07 20
06 05 9234208207	2000	Q-2	SUNDA	Y C (21	-8) AT C	2110123			
06 05 9234208207 JUL 1987 22	2000	Q-2 :		Y C (21 1,650	3.3	25.0	137	0	75
06 05 9234208207 JUL 1987 0CT	2000						137 244	0	75 1,100
06 05 9234208207 JUL 1987 22	2000	11		1,650	3.3	25.0			

Table 21.--Water-quality data for long-term surface-water sites, 1987-88--Continued

Date		Alu- minum, total recov- erable (Ag/L as Al)	minum, dis- solved (µg/L	Iron, total recov- erable (ug/L as Fe)	Iron, dis- solved (µg/L as Fe)	Manga- nese, total recov- erable (ug/L as Mn)	Manga- nese, dis- solved (ug/L as Mn)	
03160105 S-2	CAMP	AIGN C NR	GALLIPOLIS	OH (LAT	38 53 51N	LONG 08	2 11 31W)	
JUL 1987		460	50	640	90	2,400	2,400	
OCT 27 JUN 1988		50	30	190	100	9,500	9,000	
JUN 1988 07		140	10	890	30	2,500	2,400	
OCT 05						2-		
03201988 S-1	L RA	CCOON C NR	VINTON OH	(LAT 38	57 11N LO	NG 082 2	1 56W)	
JUL 1987 22		4,000	4,200	400	90	2,800	2,600	
OCT 27		160	20	730	350	940	940	
JUN 1988		100	<10	320	140	4,300		
06		70	10	710	210		4,300	
00		70	10	710	210	280	310	
38271508224240	0 T-2	INDIAN G	UYAN C NR	BRADRICK	OH (LAT 3	3 27 15N	LONG 082	24 24W)
JUL 1987		610	30	820	30	400	410	
OCT		50	<10	400	270	3,700	3,400	
JUN 1988 07		160	<10	570	90	490	460	
OCT 06		340	30	760	100	540	540	
38300508228060	T-1	SYMMES C	NR GETAWA	Y OH (LAT	38 30 051	LONG OR	2 28 06W)	
JUL 1987		340	30	1,300	50	740	760	
OCT 28		20	<10	680	190	2,400	2,200	
JUN 1988		230	<10	1,100	120	1,000		
OCT 06		30	10		360		1,000	
00		30	10	640	360	710	730	
385826082201800	R-1	RACCOON	C AT VINTON	TAL) HO	38 58 261	LONG 08	2 20 18W)	
JUL 1987		270	<10	520	40	700	680	
OCT		60	<10	810	360	1,700	1,600	
JUN 1988		90	<10	340	30	3,100	2,900	
OCT 06		110	20	780	120	810	820	
90941082212200	R-2	ELK F (11	L-5) NR RAD	CLIFF OH	(LAT 39 0	9 41N LO	NG 082 21	22W)
JUL 1987		250	20	000	120	700	700	
OCT 22			20	920	130	700	720	
JUN 1988				770				
OCT OCT		80	<10	770	160	2,000	1,900	
05		270	30	880	350	730	700	
	Q-2	SUNDAY C	(21-8) AT	CHAUNCEY	OH (LAT 3	9 23 42N	LONG 082	07 20W)
92342082072000								
JUL 1987		240	30	570	70	40	40	
JUL 1987 OCT			30	570 62,000	70 51,000	4.800	5,000	
JUL 1987		240 3,700 60	3,900	570 62,000 42,000	70 51,000 38,000	40 4,800 2,100	40 5,000 2,200	

Table 21.--Water-quality data for long-term surface-water sites, 1987-88-Continued

	Instan- taneous dis- charge	Spe- cific con- duc- tance		Temper-	Acidity (mg/L	Alka- linity, field (mg/L as	Sul- fate, dis- solved (mg/L as
Date	(ft ³ /s)	(µS/cm)	pН	(°C)	CaCO3)	CaCO3)	SO ₄)
- 395214082054700 47W)	0-3 JON	IATHAN C (3	35-8) AT	WHITE COI	TAGE OH (1	LAT 39 52	14N LONG 082 05
JUL 1987	5.8	1,020	8.5	28.5	22	107	350
OCT 28	6.8	1,970	8.4	8.5		72	760
JUN 1988	0.85	1,300	7.8	19.0		125	82
OCT 04	4.0	1,650	7.8	15.5		52	560
					N OH CLAT		
95337082011100	U-I MUX	AHALA U (3	33-9) NK	DARLINGIC	N OH (LAT	39 33 371	N LONG 082 01 11
JUL 1987	26	1,300	5.4	26.5	14	6	170
OCT 28	20	2,350	3.9	6.5	70	0	1,000
JUN 1988 07	42	1,250	6.6	22.0		11	540
OCT 04	19	1,750	4.9	14.5	66	52	180
95417081323000	K-1 WII	LS C AT PI	EASANT	CITY OH (I	AT 39 54 1	7N LONG	081 32 30W)
JUL 1987				· (-		THE DOLLO	501 52 500,
21 OCT	2.9	1,900	8.3	29.0		189	900
28 JUN 1988	5.9	2,600	8.2	5.0		242	1,200
OS	8.2	1,400	7.7	23.5		214	560
04	4.0	2,380	7.9	15.5		250	1,200
00117081362600	L-1 CRO	OKED C NR	CAMBRID	GE OH (LAT	40 01 17N	LONG 08	1 36 26W)
JUL 1987	2.7	555	8.2	25.5		157	200
OCT 27	4.2	715	7.7	8.0	144	173	140
JUN 1988 08	1.0	595	7.8	20.5		156	110
OCT 05	0.39	810	7.4	12.0		164	860
00912082014700	M=2 T.TT	TT.R WARATO	MTKA C	NR TRINUAY	OH (LAT 4	0 09 12N	LONG 082 01 47W
JUL 1987		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					20.10 002 02 1711
20 OCT	8.4	1,000	7.8	24.0		92	470
28. JUN 1988	8.2	1,700	7.6	7.5		88	830
06 OCT	8.8	1,190	7.6	18.0		83	580
05	2.0	1,600	7.5	11.0		83	920
00920081432900	L-2 WHI	TE EYES C	NR PLAI	NFIELD OH	(LAT 40 09	20N LONG	G 081 43 29W)
JUL 1987	4.4	720	7.6	25.0		84	270
OCT 27	5.2	820	7.4	8.0		84	340
JUN 1988 08	4.9	720	7.4	20.0		90	260
OCT 05	1.8	1,050	7.5	11.5		97	480
					(TAT 60 1		
01624081262400	T-E DUC	ALIONII C AI	MEWCON	LINDIOWN ON	(181 40 1	.U Z-M LOF	IG 081 36 34W)
				24 0	0.000	73	170
JUL 1987 21	3.8	430	7.8	24.0			
JUL 1987 21 OCT 27	3.8	430 490	7.8	8.5		79	100
21 OCT							

Table 21.--Water-quality data for long-term surface-water sites, 1987-88--Continued

Date		Alu- minum, total recov- erable (ug/L as Al)	Alu- minum, dis- solved (ug/L as Al)	Iron, total recoverable (ug/L as Fe)	Iron, dis- solved (ug/L as Fe)	Manga- nese, total recov- erable (ug/L as Mn)	Manga- nese, dis- solved (ug/L as Mn)	
395214082054700 47W)	0-3	JONATHAN C	(35-8)	AT WHITE	COTTAGE OH	(LAT 39	52 14N LONG	082 05
JUL 1987								
oct 20		170	60	2,400	<10	590	590	
28 JUN 1988		150	90	70	20	3,900	3,800	
07		50	10	170	30	190	160	
04		130	70	160	20	2,900	2,900	
395337082011100	0-1	MOXAHALA C	(35-9)	NR DARLIN	GTON OH (L	AT 39 53	37N LONG 082	01 11W)
JUL 1987		190	20	610	30	210	210	
OCT 28 JUN 1988		8,600	8,900	2,100	1,500	14,000	14,000	
07		520	40	340	120	16,000	14,000	
OCT 04		440	10	1,700	30	740	620	
395417081323000	K-1	WILLS C AT	PLEASAN	T CITY OF	I (LAT 39 5	4 17N LO	NG 081 32 30W)
JUL 1987		1,000	20	1,400	30	370	310	
OCT					73.	72.00	90	
JUN 1988		330	<10	430	20	140		
oct OS		960	10	1,600	30	490	270	
04		460	40	550	50	240	190	
400117081362600	L-1	CROOKED C	TR CAMBR	IDGE OH (LAT 40 01	17N LONG	081 36 26W)	
JUL 1987		540	<10	1,000	20	360	220	
ocT								
JUN 1988		420	10	860	80	360	330	
OCT OCT		470	10	940	<10	660	570	
05		8,400	7,500	2,000	290	8,900	8,900	
400912082014700	M-2	LITTLE WAKA	TOMIKA	C NR TRIN	WAY OH (LA	r 40 09 1	L2N LONG 082	01 47W)
JUL 1987		160	<10	630	40	420	380	
OCT 28		80	<10	360	90	860	850	
JUN 1988 06		120	10	340	20	670	670	
OCT 05		100	<10	680	30	630	570	
400920081432900	L-2	WHITE EYES	C NR PL	AINFIELD	OH (LAT 40	09 20N I	ONG 081 43 2	9W)
JUL 1987		210	20	1 400	4.0	520	510	
ocT		310	20	1,400	40	520	510	
JUN 1988		160	<10	990	220	890	930	
08		390	<10	1,400	30	980	960	
Ô5		730	30	3,000	140	890	810	
401624081363400	I-2	BUCKHORN C	AT NEWC	OMERSTOWN	OH (LAT 40	16 24N	LONG 081 36	34W)
JUL 1987		180	20	700	30	320	290	
OCT								
JUN 1988		100	320	730	410	610	570	
OCT OCT		120	20	550	90	520	490	
04		80	30	280	100	140	130	

Table 21.--Water-quality data for long-term surface-water sites, 1987-88-Continued

	Instan- taneous dis- charge	Spe- cific con- duc- tance		Temper-	Acidity (mg/L	Alka- linity, field (mg/L as	Sul- fate, dis- solved (mg/L as	
Date	(ft ³ /s)	(µS/cm)	pH	(°C)	CaCO3)	CaCO3)	so ₄)	
401716080451300	D-2 MCI	NTYRE C (31-3) NR	SMITHFIEL	D OH (LAT	40 17 161	LONG 08	0 45 13W)
JUL 1987 OCT	4.6	2,300	8.2	24.0		191	1,100	
28	6.3	2,120	8.2	8.0		216	1,100	
JUN 1988	6.0	2,150	7.8	20.5		194	1,200	
OCT 05	1.6	2,050	8.6	11.0		201	1,200	
401857080391700	B-2 CRO	SS C (61-4) NR MI	NGO JUNCTI	ON OH (LA	r 40 18 57	N LONG O	80 39 17W)
JUL 1987	23	1,550	8.5	28.5		114	660	
OCT 28	40				-			
JUN 1988		1,320	8.4	7.0		144	590	
OCT	21	1,500	8.1	19.5		138	710	
05	6.6	1,550	8.6	10.5		159	850	
401936082001400	J-2 SIM	MONS RN NE	WARSAW	OH (LAT 4	0 19 36N	LONG 082 (00 14W)	
JUL 1987 20	2.5	700	7.9	23.5	1	112	230	
OCT 26	0.91	1,150	7.8	6.0		106	530	
JUN 1988 08	0.63	915	7.5	19.5		113	330	
OCT 04								
04	0.48	1,030	7.6	12.5		107	500	
403426081211900	F-1 CON	OTTON C NE	SOMERDA	ALE OH (LA	T 40 34 20	SN LONG OF	31 21 19W)
JUL 1987	45	445	7.6	24.0		81	190	
OCT 26	22	480	7.7	8.0		91	120	
JUN 1988 07	43	470	7.2	19.5		74	110	
OCT 05	22	582	7.2	11.0		81	140	
		302	7.2	11.0		01	140	
403823081213700	E-2 NIM	ISHILLEN (R AT SAN	DAAITTE O	H (LAT 40	38 23N LC	ONG 081 2	1 37W)
JUL 1987 21	114	1,300	8.2	27.0		198	330	
OCT 26	68	1,480	8.1	10.0		192	190	
JUN 1988 07	80	1,250	7.7	20.0		200	200	
OCT 05	54	1,530	7.9	12.5		213	190	
410616082075500	M-1 WAK	ATOMIKA C	NR FRAZI	YSBURG OH	(LAT 41 (06 16N LON	IG 082 07	55W)
JUL 1987	33	350	7.6	23.5		82	27	
OCT 28. JUN 1988	18	465	7.9	7.5		111	23	
JUN 1988 06	18	390	7.5	18.0	-	87	38	
OCT 05	10							
v3	10	490	7.6	12.0		105	23	

Table 21.--Water-quality data for long-term surface-water sites, 1987-88-Continued

Date		Alu- minum, total recov- erable (ug/L as Al)	Alu- minum dis- solved (µg/L as Al)	erable (ug/L	Iron, dis- solved (µg/L as Fe)	recov-	Manga- nese, dis- solved (ug/L as Mn)	
401716080451300	D-2	MCINTYRE C	(61-3)	NR SMITHF	IELD OH	(LAT 40 17	16N LONG (080 45 13W
JUL 1987		260	50	210	30	50	60	
OCT 28		80	40	110	20	80	90	
JUN 1988 08		100	40	120	10	90	60	
OCT 05		60	30	110	30	70	60	
401857080391700	B-2	CROSS C (6:	1-4) NF	MINGO JUN	CTION OH	(LAT 40 1	8 57N LONG	080 39 170
JUL 1987		620	150	450	20	130	100	
OCT 28		230	30	90	20	150	130	
JUN 1988 07		300	70	180	10	120	90	
OCT 05		550	30	420	20	220	70	
01936082001400	J-2	SIMMONS RN	NR WAR	RSAW OH (LA	T 40 19	36N LONG O	82 00 14W)	
JUL 1987		130	<10	460	40	170	140	
OCT 26		30	<10	180	40	70	80	
JUN 1988 08		220	10	480	30	770	560	
OCT 04		240	30	550	20	290	290	
403426081211900	F-1	CONOTTON C	NR SOM	ERDALE OH	(LAT 40	34 26N LON	G 081 21 19	W)
JUL 1987		350	20	2,000	50	870	1,100	
OCT		200	20	1,800	600	690	680	
26 JUN 1988		300	30	1,800	80	2,600	2,700	
OCT 05		180	20	1,400	120	1,400	1,400	
03823081213700	E-2	NIMISHILLEN	CR AT	SANDYVILL	E OH (LA	r 40 38 23	N LONG 081	21 37W)
JUL 1987		150	20	670	30	130	90	
OCT		70	30	450	60	100	80	
JUN 1988		50	10	230	80	60	40	
OCT 05		70	20	240	70	40	20	
10616082075500	M-1	WAKATOMIKA	C NR F	RAZEYSBURG	OH (LAT	41 06 16N	LONG 082 0	7 55W)
JUL 1987		110	10	450	80	590	50	
28		60	<10	570	320	70	60	
JUN 1988 06		280	70	1,100	230	230	170	
00000								